2023-2024學(xué)年陜西省育才中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)試題含解析_第1頁
2023-2024學(xué)年陜西省育才中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)試題含解析_第2頁
2023-2024學(xué)年陜西省育才中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)試題含解析_第3頁
2023-2024學(xué)年陜西省育才中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)試題含解析_第4頁
2023-2024學(xué)年陜西省育才中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年陜西省育才中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若,則一定是()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形2.某海關(guān)緝私艇在執(zhí)行巡邏任務(wù)時(shí),發(fā)現(xiàn)其所在位置正西方向20nmile處有一走私船只,正以30nmile/h的速度向北偏東30°的方向逃竄,若緝私艇突然發(fā)生機(jī)械故障,20min后才以的速度開始追趕,則在走私船只不改變航向和速度的情況下,緝私艇追上走私船只的最短時(shí)間為()A.1h B.C. D.3.若函數(shù)單調(diào)遞增,則實(shí)數(shù)a的取值范圍為()A. B.C. D.4.若且,則下列選項(xiàng)中正確的是()A B.C. D.5.直線y=x+1與圓x2+y2=1的位置關(guān)系為A.相切B.相交但直線不過圓心C.直線過圓心D.相離6.若向量則()A. B.3C. D.7.已知為坐標(biāo)原點(diǎn),向量,點(diǎn),.若點(diǎn)在直線上,且,則點(diǎn)的坐標(biāo)為().A. B.C. D.8.瑞士數(shù)學(xué)家歐拉(LeonhardEuler)1765年在其所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上.后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn),其歐拉線方程為,則頂點(diǎn)C的坐標(biāo)是()A.() B.()C.() D.()9.不等式的解集為()A. B.C. D.10.函數(shù)的圖像在點(diǎn)處的切線方程為()A. B.C. D.11.已知等差數(shù)列的前項(xiàng)和為,若,則()A B.C. D.12.“”是“直線:與直線:平行”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.基礎(chǔ)建設(shè)對(duì)社會(huì)經(jīng)濟(jì)效益產(chǎn)生巨大的作用.某市投入億元進(jìn)行基礎(chǔ)建設(shè),年后產(chǎn)生億元社會(huì)經(jīng)濟(jì)效益.若該市投資基礎(chǔ)建設(shè)4年后產(chǎn)生的社會(huì)經(jīng)濟(jì)效益是投資額的2倍,則再過______年.該項(xiàng)投資產(chǎn)生的社會(huì)經(jīng)濟(jì)效益是投資額的8倍14.已知函數(shù)在處有極值2,則______.15.已知數(shù)列的前n項(xiàng)和為,則取得最大值時(shí)n的值為__________________16.已知拋物線:,過焦點(diǎn)作傾斜角為的直線與交于,兩點(diǎn),,在的準(zhǔn)線上的投影分別為,兩點(diǎn),則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在長方體中,,,是棱的中點(diǎn)(1)求證:;(2)求平面與平面夾角的余弦值;(3)在棱上是否存在一點(diǎn),使得與平面所成角的正弦值為,若存在,求出的長;若不存在,請(qǐng)說明理由18.(12分)已知圓C過點(diǎn),,它與x軸的交點(diǎn)為,,與y軸的交點(diǎn)為,,且.(1)求圓C的標(biāo)準(zhǔn)方程;(2)若,直線,從點(diǎn)A發(fā)出的一條光線經(jīng)直線l反射后與圓C有交點(diǎn),求反射光線所在的直線的斜率的取值范圍.19.(12分)如圖,在直三棱柱中,,,,點(diǎn)是的中點(diǎn).(1)求證:;(2)求證:平面.20.(12分)已知拋物線的焦點(diǎn)為F,傾斜角為45°的直線m過點(diǎn)F,若此拋物線上存在3個(gè)不同的點(diǎn)到m的距離為,求此拋物線的準(zhǔn)線方程21.(12分)在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,角A、B、C的度數(shù)成等差數(shù)列,(1)若,求c的值;(2)求最大值22.(10分)已知函數(shù).(1)若與在處有相同的切線,求實(shí)數(shù)的取值;(2)若時(shí),方程在上有兩個(gè)不同的根,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用余弦定理角化邊整理可得.【詳解】由余弦定理有,整理得,故一定是直角三角形.故選:C2、A【解析】設(shè)小時(shí)后,相遇地點(diǎn)為,在三角形中根據(jù)題目條件得出,再在三角形中,由勾股定理即可求出.【詳解】以緝私艇為原點(diǎn),建立如下圖所示的直角坐標(biāo)系.圖中走私船所在位置為,設(shè)緝私艇追上走私船的最短時(shí)間為,相遇地點(diǎn)為.則,走私船以的速度向北偏東30°的方向逃竄,60°.因?yàn)?0min后緝私艇才以的速度開始追趕走私船,所以20min走私船行走了,到達(dá).在三角形中,由余弦定理知:,則,所以.在三角形中,,,有:,化簡得:,則.緝私艇追上走私船只的最短時(shí)間為1h.故選:A.點(diǎn)睛】3、D【解析】根據(jù)函數(shù)的單調(diào)性,可知其導(dǎo)數(shù)在R上恒成立,分離參數(shù),即可求得答案.【詳解】由題意可知單調(diào)遞增,則在R上恒成立,可得恒成立,當(dāng)時(shí),取最小值-1,故,故選:D4、C【解析】對(duì)于A,作商比較,對(duì)于B,利用基本不等式的推廣式判斷,對(duì)于C,利用在單位圓中,內(nèi)接正邊形的面積小于內(nèi)接正邊形的面積判斷,對(duì)于D,利用放縮法判斷【詳解】,故錯(cuò)誤;,故錯(cuò)誤;在單位圓中,內(nèi)接正邊形的面積小于內(nèi)接正邊形的面積(必修三閱讀材料割圓術(shù)),則,故正確;,故錯(cuò)誤故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查不等式的綜合應(yīng)用,考查基本不等式的推廣式的應(yīng)用,考查放縮法的應(yīng)用,對(duì)于C項(xiàng)解題的關(guān)鍵是利用了在單位圓中,內(nèi)接正邊形的面積小于內(nèi)接正邊形的面積求解,考查數(shù)學(xué)轉(zhuǎn)化思想,屬于難題5、B【解析】求出圓心到直線的距離d,與圓的半徑r比較大小即可判斷出直線與圓的位置關(guān)系,同時(shí)判斷圓心是否在直線上,即可得到正確答案解:由圓的方程得到圓心坐標(biāo)(0,0),半徑r=1則圓心(0,0)到直線y=x+1的距離d==<r=1,把(0,0)代入直線方程左右兩邊不相等,得到直線不過圓心所以直線與圓的位置關(guān)系是相交但直線不過圓心故選B考點(diǎn):直線與圓的位置關(guān)系6、D【解析】先求得,然后根據(jù)空間向量模的坐標(biāo)運(yùn)算求得【詳解】由于向量,,所以.故故選:D7、A【解析】由在直線上,設(shè),再利用向量垂直,可得,進(jìn)而可求E點(diǎn)坐標(biāo).【詳解】因?yàn)樵谥本€上,故存在實(shí)數(shù)使得,.若,則,所以,解得,因此點(diǎn)的坐標(biāo)為.故選:A.【定睛】本題考查了空間向量的共線和數(shù)量積運(yùn)算,考查了運(yùn)算求解能力和邏輯推理能力,屬于一般題目.8、A【解析】根據(jù)題意,求得的外心,再根據(jù)外心的性質(zhì),以及重心的坐標(biāo),聯(lián)立方程組,即可求得結(jié)果.【詳解】因?yàn)?,故的斜率,又的中點(diǎn)坐標(biāo)為,故的垂直平分線的方程為,即,故△的外心坐標(biāo)即為與的交點(diǎn),即,不妨設(shè)點(diǎn),則,即;又△的重心的坐標(biāo)為,其滿足,即,也即,將其代入,可得,,解得或,對(duì)應(yīng)或,即或,因?yàn)榕c點(diǎn)重合,故舍去.故點(diǎn)的坐標(biāo)為.故選:A.9、A【解析】根據(jù)一元二次不等式的解法進(jìn)行求解即可.【詳解】,故選:A.10、B【解析】求得函數(shù)的導(dǎo)數(shù),計(jì)算出和的值,可得出所求切線的點(diǎn)斜式方程,化簡即可.詳解】,,,,因此,所求切線的方程為,即.故選:B.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求解函圖象的切線方程,考查計(jì)算能力,屬于基礎(chǔ)題11、B【解析】利用等差數(shù)列的性質(zhì)可求得的值,再結(jié)合等差數(shù)列求和公式以及等差中項(xiàng)的性質(zhì)可求得的值.【詳解】由等差數(shù)列的性質(zhì)可得,則,故.故選:B.12、C【解析】根據(jù)兩直線平行求得的值,由此確定充分、必要條件.【詳解】由于,所以,當(dāng)時(shí),兩直線重合,不符合題意,所以.所以“”是“直線:與直線:平行”的充要條件.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】由4年后產(chǎn)生的社會(huì)經(jīng)濟(jì)效益是投資額的2倍,代入已知函數(shù)式求得參數(shù),再求得社會(huì)經(jīng)濟(jì)效益是投資額的8倍時(shí)的時(shí)間,即為所求結(jié)論【詳解】由條件得,∴,即.設(shè)投資年后,產(chǎn)生的社會(huì)經(jīng)濟(jì)效益是投資額的8倍,則有,解得,所以再過年,該項(xiàng)投資產(chǎn)生社會(huì)經(jīng)濟(jì)效益是投資額的8倍故答案為:814、6【解析】根據(jù)函數(shù)在處有極值2,可得,解方程組即可得解.【詳解】解:,因?yàn)楹瘮?shù)在處有極值2,所以,即,解得,則,故當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在處有極大值,所以,所以.故答案為:6.15、①.13②.##3.4【解析】由題可得利用函數(shù)的單調(diào)性可得取得最大值時(shí)n的值,然后利用,即求.【詳解】∵,∴當(dāng)時(shí),單調(diào)遞減且,當(dāng)時(shí),單調(diào)遞減且,∴時(shí),取得最大值,∴.故答案為:13;.16、【解析】設(shè),則,將直線方程與拋物線方程聯(lián)立,結(jié)合韋達(dá)定理即得.【詳解】由拋物線:可知?jiǎng)t焦點(diǎn)坐標(biāo)為,∴過焦點(diǎn)且斜率為的直線方程為,化簡可得,設(shè),則,由可得,所以則故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(3)存點(diǎn),【解析】(1)先證明平面,由平面,可證明結(jié)論.(2)以分別為軸,建立空間直角坐標(biāo)系,分別求出平面與平面的法向量,利用向量法求求解即可.(3)設(shè),,則,則由向量法結(jié)合條件可得答案.【詳解】(1)在長方體中,,又,所以平面又平面,所以.(2)以分別為軸,建立空間直角坐標(biāo)系因?yàn)?,,是棱的中點(diǎn)則則為平面的一個(gè)法向量.設(shè)為平面的一個(gè)法向量.,所以,即取,可得所以如圖平面與平面夾角為銳角,所以平面與平面夾角的余弦值為.(3)設(shè),,則由(2)平面的一個(gè)法向量設(shè)與平面所成角為則解得,取所以存在點(diǎn),滿足條件.18、(1);(2).【解析】(1)設(shè)圓C的一般式方程為:,然后根據(jù)題意列出方程,解出D,E,F(xiàn)的值即可得到圓的方程;(2)先求出點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn),設(shè)反射光線所在直線方程為,利用直線和圓的位置關(guān)系列出不等式解出k的取值范圍即可.【詳解】(1)設(shè)圓C的一般式方程為:,令,得,所以,令,得,所以,所以有,所以,①又圓C過點(diǎn),,所以有,②,③由①②③得,,,所以圓C的一般式方程為,標(biāo)準(zhǔn)方程為;(2)設(shè)關(guān)于的對(duì)稱點(diǎn),所以有,解之得,故點(diǎn),∴反射光線所在直線過點(diǎn),設(shè)反射光線所在直線方程為:,所以有,所以反射光線所在的直線斜率取值范圍為.【點(diǎn)睛】本題考查圓的方程的求法,直線和圓的位置關(guān)系的應(yīng)用,考查邏輯思維能力和運(yùn)算求解能力,屬于常考題.19、(1)證明見解析;(2)證明見解析.【解析】(1)由直棱柱的性質(zhì)可得,由勾股定理可得,由線面垂直判定定理即可得結(jié)果;(2)取的中點(diǎn),連結(jié)和,通過線線平行得到面面,進(jìn)而得結(jié)果.【詳解】(1)∵直三棱柱,∴面,∴,又∵,,,∴,∴,∵,∴面,∴(2)取的中點(diǎn),連結(jié)和,∵,且,∴四邊形為平行四邊形,∴,面,∴面,∵,且,∴四邊形平行四邊形,∴,面,∴面,∵,∴面面,∴平面.【點(diǎn)睛】方法點(diǎn)睛:線面平行常見的證明方法:(1)通過構(gòu)造相似三角形(三角形中位線),得到線線平行;(2)通過構(gòu)造平行四邊形得到線線平行;(3)通過線面平行得到面面平行,再得線面平行.20、【解析】設(shè)出直線m的方程,利用方程組聯(lián)立、一元二次方程根的判別式求出與直線m平行的拋物線的切線方程,結(jié)合平行線間距離公式進(jìn)行求解即可.【詳解】拋物線的焦點(diǎn)坐標(biāo)為:,設(shè)直線m為,設(shè)為與拋物線相切,聯(lián)立直線與拋物線方程,化簡整理可得,,則,解得,且,故兩平行線間的距離,解得,故所求的準(zhǔn)線方程為21、(1);(2)【解析】(1)利用等差數(shù)列以及三角形內(nèi)角和,正弦定理以及余弦定理求解即可;(2)利用正弦定理以及兩角和與差的三角函數(shù),結(jié)合三角函數(shù)的最值求解即可【詳解】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論