福建省建甌市二中2023年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
福建省建甌市二中2023年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
福建省建甌市二中2023年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
福建省建甌市二中2023年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
福建省建甌市二中2023年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

福建省建甌市二中2023年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知圓與圓,則兩圓的位置關(guān)系是()A.外切 B.內(nèi)切C.相交 D.相離2.在等差數(shù)列中,若,且前n項(xiàng)和有最大值,則使得的最大值n為()A.15 B.16C.17. D.183.已知向量,,若與共線,則實(shí)數(shù)值為()A. B.C.1 D.24.如圖,,是平面上兩點(diǎn),且,圖中的一系列圓是圓心分別為,的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,A,B,C,D,E是圖中兩組同心圓的部分公共點(diǎn).若點(diǎn)A在以,為焦點(diǎn)的橢圓M上,則()A.點(diǎn)B和C都在橢圓M上 B.點(diǎn)C和D都在橢圓M上C.點(diǎn)D和E都在橢圓M上 D.點(diǎn)E和B都在橢圓M上5.設(shè)變量,滿足約束條件則的最小值為()A.3 B.-3C.2 D.-26.已知,則下列說法錯(cuò)誤的是()A.若,分別是直線,的方向向量,則直線,所成的角的余弦值是B.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是C.若,分別是平面,的法向量,則平面,所成的角的余弦值是D.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是7.以軸為對(duì)稱軸,拋物線通徑的長為8,頂點(diǎn)在坐標(biāo)原點(diǎn)的拋物線的方程是()A. B.C.或 D.或8.某幾何體的三視圖如圖所示,則該幾何體的體積為A.54 B.45C.27 D.819.設(shè),向量,,,且,,則()A. B.C.3 D.410.直線過點(diǎn)且與雙曲線僅有一個(gè)公共點(diǎn),則這樣的直線有()A.1條 B.2條C.3條 D.4條11.設(shè)拋物線的焦點(diǎn)為,點(diǎn)為拋物線上一點(diǎn),點(diǎn)坐標(biāo)為,則的最小值為()A. B.C. D.12.已知直線與x軸,y軸分別交于A,B兩點(diǎn),且直線l與圓相切,則的面積的最小值為()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.若是直線外一點(diǎn),為線段的中點(diǎn),,,則______14.已知橢圓的短軸長為2,上頂點(diǎn)為,左頂點(diǎn)為,左、右焦點(diǎn)分別是,,且的面積為,點(diǎn)為橢圓上的任意一點(diǎn),則的取值范圍是______.15.拋物線上的點(diǎn)到其焦點(diǎn)的最短距離為_________.16.觀察式子:,,,由此歸納,可猜測一般性的結(jié)論為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:,經(jīng)過的直線與拋物線C交于A,B兩點(diǎn)(1)求的值(其中為坐標(biāo)原點(diǎn));(2)設(shè)F為拋物線C的焦點(diǎn),直線為拋物線C的準(zhǔn)線,直線是拋物線C的通徑所在的直線,過C上一點(diǎn)P()()作直線與拋物線相切,若直線與直線相交于點(diǎn)M,與直線相交于點(diǎn)N,證明:點(diǎn)P在拋物線C上移動(dòng)時(shí),恒為定值,并求出此定值18.(12分)已知等差數(shù)列的前n項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式及;(2)設(shè),求數(shù)列的前n項(xiàng)和.19.(12分)在平面直角坐標(biāo)系中,已知點(diǎn)在橢圓上,其中為橢圓E的離心率(1)求b的值;(2)A,B分別為橢圓E的左右頂點(diǎn),過點(diǎn)的直線l與橢圓E相交于M,N兩點(diǎn),直線與交于點(diǎn)T,求證:20.(12分)已知點(diǎn),橢圓:離心率為,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).設(shè)過點(diǎn)的動(dòng)直線與相交于,兩點(diǎn)(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請(qǐng)說明理由21.(12分)已知橢圓過點(diǎn),離心率為.(1)求橢圓的方程;(2)過點(diǎn)作直線,與直線和橢圓分別交于兩點(diǎn),(與不重合).判斷以為直徑的圓是否過定點(diǎn),如果過定點(diǎn),求出定點(diǎn)坐標(biāo);如果不過定點(diǎn),說明理由.22.(10分)如圖,在幾何體中,底面是邊長為2的正三角形,平面,,且,是的中點(diǎn)(1)求證:平面;(2)求異面直線與所成的角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】求得兩圓的圓心和半徑,再根據(jù)圓心距與半徑之和半徑之差的關(guān)系,即可判斷位置關(guān)系.【詳解】對(duì)圓,其圓心,半徑;對(duì)圓,其圓心,半徑;又,故兩圓外切.故選:A.2、A【解析】由題可得,則,可判斷,,即可得出結(jié)果.【詳解】前n項(xiàng)和有最大值,,,,,,,使得的最大值n為15.故選:A.【點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和的有關(guān)判斷,解題的關(guān)鍵是得出.3、D【解析】根據(jù)空間向量共線有,,結(jié)合向量的坐標(biāo)即可求的值.【詳解】由題設(shè),有,,則,可得.故選:D4、C【解析】根據(jù)橢圓的定義判斷即可求解.【詳解】因?yàn)椋詸E圓M中,因?yàn)椋?,,所以D,E在橢圓M上.故選:C5、D【解析】轉(zhuǎn)化為,則最小即直線在軸上的截距最大,作出不等式組表示的可行域,數(shù)形結(jié)合即得解【詳解】轉(zhuǎn)化為,則最小即直線在軸上的截距最大作出不等式組表示的可行域如圖中陰影部分所示,作出直線,平移該直線,當(dāng)直線經(jīng)過時(shí),在軸上的截距最大,最小,此時(shí),故選:D6、D【解析】利用空間角的意義結(jié)合空間向量求空間角的方法逐一分析各選項(xiàng)即可判斷作答.【詳解】對(duì)于A,因分別是直線的方向向量,且,直線所成的角為,則,A正確;對(duì)于B,D,因分別是直線l的方向向量與平面的法向量,且,直線l與平面所成的角為,則有,B正確,D錯(cuò)誤;對(duì)于C,因分別是平面的法向量,且,平面所成的角為,則不大于,,C正確.故選:D7、C【解析】由分焦點(diǎn)在軸的正半軸上和焦點(diǎn)在軸的負(fù)半軸上,兩種情況討論設(shè)出方程,根據(jù),即可求解.【詳解】由題意,拋物線的頂點(diǎn)在原點(diǎn),以軸為對(duì)稱軸,且通經(jīng)長為8,當(dāng)拋物線的焦點(diǎn)在軸的正半軸上時(shí),設(shè)拋物線的方程為,可得,解得,所以拋物線方程為;當(dāng)拋物線的焦點(diǎn)在軸的負(fù)半軸上時(shí),設(shè)拋物線的方程為,可得,解得,所以拋物線方程為,所以所求拋物線的方程為.故選:C.8、B【解析】由三視圖可得該幾何體是由平行六面體切割掉一個(gè)三棱錐而成,直觀圖如圖所示,所以該幾何體的體積為故選B點(diǎn)睛:本題考查了組合體的體積,由三視圖還原出幾何體,由四棱柱的體積減去三棱錐的體積.9、C【解析】根據(jù)空間向量垂直與平行的坐標(biāo)表示,求得的值,得到向量,進(jìn)而求得,得到答案.【詳解】由題意,向量,,,因?yàn)?,可得,解得,即,又因?yàn)?,可得,解得,即,可得,所?故選:C.10、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結(jié)合雙曲線的漸近線的性質(zhì),即可求解.【詳解】當(dāng)直線的斜率不存在時(shí),直線過雙曲線的右頂點(diǎn),方程為,滿足題意;當(dāng)直線的斜率存在時(shí),若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個(gè)公共點(diǎn).綜上可得,滿足條件的直線共有3條.故選:C.【點(diǎn)睛】本題主要考查了直線與雙曲線的位置關(guān)系,以及雙曲線的漸近線的性質(zhì),其中解答中忽視斜率不存在的情況是解答的一個(gè)易錯(cuò)點(diǎn),著重考查了分析問題和解答問題的能力,以及分類討論思想的應(yīng)用,屬于基礎(chǔ)題.11、B【解析】設(shè)點(diǎn)P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,進(jìn)而把問題轉(zhuǎn)化為求|PM|+|PD|的最小值,即可求解【詳解】解:由題意,設(shè)點(diǎn)P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,當(dāng)D,P,M三點(diǎn)共線時(shí),|PM|+|PD|取得最小值為故選:B12、A【解析】由直線與圓相切可得,再利用基本不等式即求.【詳解】由已知可得,,因?yàn)橹本€與圓相切,所以,即,因?yàn)?,?dāng)且僅當(dāng)時(shí)取等號(hào),所以,,所以面積的最小值為1.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意得到,進(jìn)而得到,求得的值,即可求解.【詳解】因?yàn)闉榫€段的中點(diǎn),所以,所以,又因?yàn)椋?,所以故答案為?14、【解析】根據(jù)的面積和短軸長得出a,b,c的值,從而得出的范圍,得到關(guān)于的函數(shù),從而求出答案【詳解】由已知得,故,∵的面積為,∴,∴,又,∴,,∴,又,∴,∴.即的取值范圍為.故答案為點(diǎn)睛】本題考查了橢圓的簡單性質(zhì),函數(shù)最值的計(jì)算,熟練掌握橢圓的基本性質(zhì)是解題的關(guān)鍵,屬于中檔題15、1【解析】設(shè)出拋物線上點(diǎn)的坐標(biāo),利用兩點(diǎn)間距離公式建立函數(shù)關(guān)系,借助函數(shù)性質(zhì)計(jì)算作答.【詳解】拋物線的焦點(diǎn),設(shè)點(diǎn)為拋物線上任意一點(diǎn),于是有,當(dāng)且僅當(dāng)時(shí)取“=”,所以當(dāng),即點(diǎn)P為拋物線頂點(diǎn)時(shí),取最小值1.故答案為:116、【解析】根據(jù)規(guī)律,不等式的左邊是個(gè)自然數(shù)倒數(shù)的平方的和,右邊分母是以2為首項(xiàng),1為公差的等差數(shù)列,分子是以3為首項(xiàng),2為公差的等差數(shù)列,由此可得結(jié)論【詳解】解:觀察可以發(fā)現(xiàn),第個(gè)不等式左端有項(xiàng),分子為1,分母依次為,,,,;右端分母為,分子成等差數(shù)列,首項(xiàng)為3,公差為2,因此第個(gè)不等式()故答案為:()三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析,定值為【解析】(1)設(shè)出直線的方程并與拋物線方程聯(lián)立,結(jié)合根與系數(shù)關(guān)系求得.(2)求得過點(diǎn)的拋物線的切線方程,由此求得兩點(diǎn)的坐標(biāo),通過化簡來證得為定值,并求得定值.【小問1詳解】依題意可知直線的斜率不為零,設(shè)直線的方程為,設(shè),,消去并化簡得,所以,所以.小問2詳解】拋物線方程為,焦點(diǎn)坐標(biāo)為,準(zhǔn)線,通徑所在直線,在拋物線上,且,所以過點(diǎn)的拋物線的切線的斜率存在且不為零,設(shè)過點(diǎn)的切線方程為,由消去并化簡得,,將代入上式并化簡得,解得,所以切線方程為,令得,令得,,將代入上式并化簡得,所以為定值,且定值為.18、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件可得出關(guān)于、的方程組,解出這兩個(gè)量的值,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式,利用等差數(shù)列前n項(xiàng)和公式求出;(2)求得,利用裂項(xiàng)相消法即可求得.【小問1詳解】設(shè)等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項(xiàng)公式,;【小問2詳解】由(1)可得,所以,所以.19、(1)1(2)證明見解析【解析】(1)根據(jù)點(diǎn)在橢圓E上建立方程,結(jié)合,然后解出方程即可;(2)聯(lián)立直線與橢圓的方程,表示出直線與,求得交點(diǎn)的坐標(biāo),再分別表示出直線和的斜率并作差,通過韋達(dá)定理證明直線和的斜率相等即可.【小問1詳解】由點(diǎn)在橢圓E上,得:又,即解得:【小問2詳解】依題意,得,且直線l與x軸不會(huì)平行設(shè)直線l的方程為,,由方程組消去x可得:則有:,且直線的方程為,直線的方程為由方程組可得:設(shè)直線的斜率分別是,則有:可得:又可得:故【點(diǎn)睛】(1)解答直線與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系(2)涉及到直線方程時(shí),務(wù)必考慮全面,不要忽略直線斜率為或不存在等特殊情形請(qǐng)考生在第22-23題中任選一題作答,如果多做,則按所做的第一題計(jì)分20、(1);(2)存在;或.【解析】(1)設(shè),由,,,求得的值即可得橢圓的方程;(2)設(shè),,直線的方程為與橢圓方程聯(lián)立可得,,進(jìn)而可得弦長,求出點(diǎn)到直線的距離,解方程,求得的值即可求解.【小問1詳解】設(shè),因?yàn)橹本€的斜率為,,所以,可得,又因?yàn)?,所以,所以,所以橢圓的方程為【小問2詳解】假設(shè)存在直線,使得的面積為,當(dāng)軸時(shí),不合題意,設(shè),,直線的方程為,聯(lián)立消去得:,由可得或,,,所以,點(diǎn)到直線的距離,所以,整理可得:即,所以或,所以或,所以存在直線:或使得的面積為.21、(1)(2)過定點(diǎn),定點(diǎn)為【解析】(1)根據(jù)離心率及頂點(diǎn)坐標(biāo)求出即可得橢圓方程;(2)當(dāng)直線斜率存在時(shí),設(shè)直線的方程為(),求出的坐標(biāo),設(shè)是以為直徑的圓上的點(diǎn),利用向量垂直可得恒成立,可得定點(diǎn),斜率不存在時(shí)驗(yàn)證即可.【小問1詳解】由題意得,,,又因?yàn)椋?所以橢圓C的方程為.【小問2詳解】以為直徑的圓過定點(diǎn).理由如下:當(dāng)直線斜率存在時(shí),設(shè)直線的方程為().令,得,所以.由得,則或,所以.設(shè)是以為直徑的圓上的任意一點(diǎn),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論