版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆玉樹市重點中學數學高二上期末經典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設平面向量,,其中m,,記“”為事件A,則事件A發(fā)生的概率為()A. B.C. D.2.“”是“方程表示焦點在x軸上的橢圓”的()A.充要條件 B.必要而不充分條件C.充分而不必要條件 D.既不充分也不必要條件3.下列函數求導錯誤的是()A.B.C.D.4.求點關于x軸的對稱點的坐標為()A. B.C. D.5.在空間直角坐標系中,點關于軸的對稱點為點,則點到直線的距離為()A. B.C. D.66.橢圓=1的一個焦點為F,過原點O作直線(不經過焦點F)與橢圓交于A,B兩點,若△ABF的面積是20,則直線AB的斜率為()A. B.C. D.7.若,則()A.0 B.1C. D.28.如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為、,其中,.如果這時氣球的高度,則河流的寬度BC為()A. B.C. D.9.甲、乙兩名同學8次考試的成績統(tǒng)計如圖所示,記甲、乙兩人成績的平均數分別為,,標準差分別為,,則()A.>,< B.>,>C.<,< D.<,>10.五行學說是中華民族創(chuàng)造的哲學思想.古代先民認為,天下萬物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關系的概率是()A. B.C. D.11.①直線在軸上的截距為;②直線的傾斜角為;③直線必過定點;④兩條平行直線與間的距離為.以上四個命題中正確的命題個數為()A. B.C. D.12.數列是等比數列,是其前n項之積,若,則的值是()A.1024 B.256C.2 D.512二、填空題:本題共4小題,每小題5分,共20分。13.在某次海軍演習中,已知甲驅逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護衛(wèi)艦在甲驅逐艦的正西方向,若測得乙護衛(wèi)艦在航母的南偏西45°方向,則甲驅逐艦與乙護衛(wèi)艦的距離為___________海里.14.甲、乙兩人獨立地破譯一份密碼,已知各人能破譯的概率分別為,則密碼被成功破譯的概率_________15.在等比數列中,已知,則________16.某足球俱樂部選拔青少年隊員,每人要進行3項測試.甲隊員每項測試通過的概率均為,且不同測試之間相互獨立,設他通過的測試項目數為X,則_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知正三棱柱底面邊長為,是上一點,是以為直角頂點的等腰直角三角形(1)證明:是中點;(2)求點到平面的距離18.(12分)2022北京冬奧會即將開始,北京某大學鼓勵學生積極參與志愿者的選拔.某學院有6名學生通過了志愿者選拔,其中4名男生,2名女生(1)若從中挑選2名志愿者,求入選者正好是一名男生和一名女生的概率;(2)若從6名志愿者中任選3人負責滑雪項目服務崗位,那么現將6人分為A、B兩組進行滑雪項目相關知識及志愿者服務知識競賽,共賽10局.A、B兩組分數(單位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139從統(tǒng)計學角度看,應選擇哪個組更合適?理由是什么?19.(12分)如圖所示,在三棱柱中,,點在平面ABC上的射影為線段AC的中點D,側面是邊長為2的菱形(1)若△ABC是正三角形,求異面直線與BC所成角的余弦值;(2)當直線與平面所成角的正弦值為時,求線段BD的長20.(12分)為增強市民的環(huán)境保護意識,某市面向全市征召若干名宣傳志愿者,成立環(huán)境保護宣傳小組,現把該小組的成員按年齡分成、、、、這組,得到的頻率分布直方圖如圖所示,已知年齡在內的人數為.(1)若用分層抽樣的方法從年齡在、、內的志愿者中抽取名參加某社區(qū)的宣傳活動,再從這名志愿者中隨機抽取名志愿者做環(huán)境保護知識宣講,求這名環(huán)境保護知識宣講志愿者中至少有名年齡在內的概率;(2)在(1)的條件下,記抽取的名志愿者分別為甲、乙,該社區(qū)為了感謝甲、乙作為環(huán)境保護知識宣講的志愿者,給甲、乙各隨機派發(fā)價值元、元、元的紀念品一件,求甲的紀念品不比乙的紀念品價值高的概率.21.(12分)(1)求函數的單調區(qū)間.(2)用向量方法證明:已知直線l,a和平面,,,,求證:.22.(10分)某小學調查學生跳繩的情況,在五年級隨機抽取了100名學生進行測試,得到頻率分布直方圖如下,且規(guī)定積分規(guī)則如下表:每分鐘跳繩個數得分17181920(1)求頻率分布直方圖中,跳繩個數在區(qū)間的小矩形的高;(2)依據頻率分布直方圖,把第40百分位數劃為合格線,低于合格分數線的學生需補考,試確定本次測試的合格分數線;(3)依據積分規(guī)則,求100名學生的平均得分.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由向量的數量積公式結合古典概型概率公式得出事件A發(fā)生的概率.【詳解】由題意可知,即,因為所有的基本事件共有種,其中滿足的為,,只有1種,所以事件A發(fā)生的概率為.故選:D2、A【解析】由橢圓的標準方程結合充分必要條件的定義即得.【詳解】若,則方程表示焦點在軸上的橢圓;反之,若方程表示焦點在軸上的橢圓,則;所以“”是“方程表示焦點在x軸上的橢圓”的充要條件.故選:A.3、C【解析】每一個選項根據求導公式及法則來運算即可判斷.【詳解】對于A,,正確;對于B,,正確;對于C,,不正確;對于D,,正確.故選:C4、D【解析】根據點關于坐標軸的對稱點特征,直接寫出即可.【詳解】A點關于x軸對稱點,橫坐標不變,縱坐標與豎坐標為原坐標的相反數,故點的坐標為,故選:D5、C【解析】按照空間中點到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.6、A【解析】分情況討論當直線AB的斜率不存在時,可求面積,檢驗是否滿足條件,當直線AB的斜率存在時,可設直線AB的方程y=kx,聯(lián)立橢圓方程,可求△ABF2的面積為S=2代入可求k【詳解】由橢圓=1,則焦點分別為F1(-5,0),F2(5,0),不妨取F(5,0)①當直線AB的斜率不存在時,直線AB的方程為x=0,此時AB=4,=AB?5=×5=10,不符合題意;②可設直線AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面積為S=2=2××5×=20,∴k=±故選:A7、D【解析】由復數的乘方運算求,再求模即可.【詳解】由題設,,故2.故選:D8、D【解析】由題意得,,,然后在和求出,從而可求出的值【詳解】如圖,由題意得,,,在中,,在中,,所以,故選:D9、A【解析】根據折線統(tǒng)計圖,結合均值、方差的實際含義判斷、及、的大小.【詳解】由統(tǒng)計圖知:甲總成績比乙總成績要高,則>,又甲成績的分布比乙均勻,故<.故選:A.10、C【解析】先計算從金、木、水、火、土五種元素中任取兩種的所有基本事件數,再計算其中兩種元素恰是相生關系的基本事件數,利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個基本事件,其中兩種元素恰是相生關系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個基本事件,所以所求概率.故選:C11、B【解析】由直線方程的性質依次判斷各命題即可得出結果.【詳解】對于①,直線,令,則,直線在軸上的截距為-,則①錯誤;對于②,直線的斜率為,傾斜角為,則②正確;對于③直線,由點斜式方程可知直線必過定點,則③正確;對于④,兩條平行直線與間的距離為,則④錯誤.故選:B.12、D【解析】設數列的公比為q,由已知建立方程求得q,再利用等比數列的通項公式可求得答案.【詳解】解:因為數列是等比數列,是其前n項之積,,設數列的公比為q,所以,解得,所以,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用正弦定理求得甲驅逐艦與乙護衛(wèi)艦的距離.【詳解】,設甲乙距離,由正弦定理得.故答案為:14、【解析】根據題意,由相互獨立事件概率的乘法公式可得密碼沒有被破譯的概率,進而由對立事件的概率性質分析可得答案【詳解】解:根據題意,甲乙兩人能成功破譯的概率分別是,,則密碼沒有被破譯,即甲乙都沒有成功破譯密碼概率,故該密碼被成功破譯的概率故答案為:15、2【解析】由等比數列的相關性質進行求解.【詳解】由等比數列的相關性質得:故答案為:216、【解析】根據二項分布的方差公式即可求出【詳解】因為,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)證明出平面,可得出,再利用等腰三角形的幾何性質可證得結論成立;(2)計算出三棱錐的體積以及的面積,利用等體積法可求得點到平面的距離.【小問1詳解】證明:在正三棱柱,平面,平面,則,因為是以為直角頂點的等腰直角三角形,則,,則平面,平面,所以,,因為為等邊三角形,故點為的中點.【小問2詳解】解:因為是邊長為的等邊三角形,則,平面,平面,則,即,所以,,,,設點到平面的距離為,,,解得.因此,點到平面距離為.18、(1)(2)答案見詳解【解析】(1):把4名男生和2名女生編號后用列舉法寫出任選2名的所有基本事件,同時可得出,兩人是一男一女的基本事件,計數后可計算概率;(2):求出兩組數據的均值和方差,比較可得【小問1詳解】設4名男生分別用A,B,C,D表示:2名女生分別用1,2表示.基本事件為:,,,,,,,,,,,,共15種,所以所求概率為;【小問2詳解】A組數據的平均數,B組數據的平均數,A組數據的方差,B組數據的方差,所以選擇A隊.理由:A、B兩隊平均數相同,且,A組成績波動小19、(1)(2)或【解析】(1)建立空間直角坐標系,利用向量法求得直線與所成角的余弦值.(2)結合直線與平面所成的角,利用向量法列方程,化簡求得的長.【小問1詳解】依題意點在平面ABC上的射影為線段AC的中點D,所以平面,,由于,所以,以為空間坐標原點建立如圖所示空間直角坐標系,,,當是等邊三角形時,,.設直線與所成角為,則.【小問2詳解】設,則,,設平面的法向量為,則,故可設,設直線與平面所成角為,則,化簡的,解得或,也即或.20、(1);(2).【解析】(1)將名志愿者進行編號,列舉出所有的基本事件,并確定所求事件所包含的基本事件數,利用古典概型的概率公式可求得所求事件的概率;(2)列舉出甲、乙獲得紀念品價值的所有情況,并確定所求事件所包含的情況,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:因為志愿者年齡在、、內的頻率分別為、、,所以用分層抽樣的方法抽取的名志愿者年齡在、、內的人數分別為、、.記年齡在內的名志愿者分別記為、、,年齡在的名志愿者分別記為、,年齡在內的名志愿者記為,則從中抽取名志愿者的情況有、、、、、、、、、、、、、、,共種可能;而至少有名志愿者的年齡在內的情況有、、、、、、、、,共種可能.所以至少有名志愿者的年齡在內的概率為.【小問2詳解】解:甲、乙獲得紀念品價值的情況有、、、、、、、、,共種可能;而甲的紀念品不比乙的紀念品價值高的情況有、、、、、,共種可能.故甲的紀念品不比乙的紀念品價值高的概率為.21、(1)的單調減區(qū)間為和,單調增區(qū)間為;(2)證明見解析.【解析】(1)求出導函數,由得增區(qū)間,由得減區(qū)間;(2)說明直線方向向量與平行的法向量垂直后可得【詳解】(1)解:定義域為R,,,解得,.當或時,,當時,.所以的單調減區(qū)間為和,單調增區(qū)間為.(2)證明:在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程應急救援員安全培訓效果測試考核試卷含答案
- 計算機及外部設備裝配調試員崗前安全應急考核試卷含答案
- 壓電石英晶體配料裝釜工安全行為考核試卷含答案
- 片基流延工安全技能測試評優(yōu)考核試卷含答案
- 鉆車司機安全防護強化考核試卷含答案
- 漆器制漆工安全宣貫評優(yōu)考核試卷含答案
- 2025年其他建筑裝飾服務合作協(xié)議書
- 2025年固體分散載體材料合作協(xié)議書
- 2025年立體倉庫設備相關物料搬運設備項目發(fā)展計劃
- 2025年抗痛風藥合作協(xié)議書
- 專業(yè)學位研究生課程案例庫建設項目申請書
- 骨髓炎VSD的護理
- GB/T 44230-2024政務信息系統(tǒng)基本要求
- 經導管主動脈瓣置換術(TAVR)患者的麻醉管理
- 江蘇省蘇州市2022-2023學年高一上學期期末學業(yè)質量陽光指標調研物理試題(原卷版)
- 本霍根的五堂課中文版
- 環(huán)境保護體系框圖
- 幼兒園課程標準要求
- 導流洞襯砌施工方案
- 江河流域農業(yè)面源污染綜合治理項目初步設計
- 基坑開挖施工方案-自然放坡
評論
0/150
提交評論