2024屆浙江省嘉興市桐鄉(xiāng)高級中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第1頁
2024屆浙江省嘉興市桐鄉(xiāng)高級中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第2頁
2024屆浙江省嘉興市桐鄉(xiāng)高級中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第3頁
2024屆浙江省嘉興市桐鄉(xiāng)高級中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第4頁
2024屆浙江省嘉興市桐鄉(xiāng)高級中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆浙江省嘉興市桐鄉(xiāng)高級中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.命題“,”的否定形式是()A., B.,C., D.,2.設(shè)集合,,則()A. B.C. D.3.若復(fù)數(shù)滿足,則復(fù)數(shù)對應(yīng)的點(diǎn)的軌跡圍成圖形的面積等于()A. B.C. D.4.某海關(guān)緝私艇在執(zhí)行巡邏任務(wù)時(shí),發(fā)現(xiàn)其所在位置正西方向20nmile處有一走私船只,正以30nmile/h的速度向北偏東30°的方向逃竄,若緝私艇突然發(fā)生機(jī)械故障,20min后才以的速度開始追趕,則在走私船只不改變航向和速度的情況下,緝私艇追上走私船只的最短時(shí)間為()A.1h B.C. D.5.若等差數(shù)列,其前n項(xiàng)和為,,,則()A.10 B.12C.14 D.166.雙曲線的離心率為,焦點(diǎn)到漸近線的距離為,則雙曲線的焦距等于A. B.C. D.7.我國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一段記載:“一百八十九里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān).”其大意為:“有一個人共行走了189里的路程,第一天健步行走,從第二天起,因腳痛每天走的路程為前一天的一半,走了6天才到達(dá)目的地.”則該人第一天行走的路程為()A.108里 B.96里C.64里 D.48里8.如圖所示,已知三棱錐,點(diǎn),分別為,的中點(diǎn),且,,,用,,表示,則等于()A. B.C. D.9.若且,則下列不等式中一定成立的是()A. B.C. D.10.已知,,,,則下列不等關(guān)系正確的是()A. B.C. D.11.命題,,則是()A., B.,C., D.,12.現(xiàn)要完成下列兩項(xiàng)調(diào)查:①從某社區(qū)70戶高收入家庭、335戶中等收入家庭、95戶低收入家庭中選出100戶,調(diào)查社會購買能力的某項(xiàng)指標(biāo);②從某中學(xué)的15名藝術(shù)特長生中選出3名調(diào)查學(xué)習(xí)負(fù)擔(dān)情況.這兩項(xiàng)調(diào)查宜采用的抽樣方法是()A①簡單隨機(jī)抽樣,②分層抽樣 B.①分層抽樣,②簡單隨機(jī)抽樣C.①②都用簡單隨機(jī)抽樣 D.①②都用分層抽樣二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列則是這個數(shù)列的第________項(xiàng).14.已知在時(shí)有極值0,則的值為____15.已知數(shù)列的通項(xiàng)公式為,,設(shè)是數(shù)列的前n項(xiàng)和,若對任意都成立,則實(shí)數(shù)的取值范圍是__________.16.已知圓:,圓:,則圓與圓的位置關(guān)系是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)求在點(diǎn)處的切線方程(2)求直線與曲線圍成的封閉圖形的面積18.(12分)已知公比的等比數(shù)列和等差數(shù)列滿足:,,其中,且是和的等比中項(xiàng)(1)求數(shù)列與的通項(xiàng)公式;(2)記數(shù)列的前項(xiàng)和為,若當(dāng)時(shí),等式恒成立,求實(shí)數(shù)的取值范圍19.(12分)如圖,在四棱錐中,平面,四邊形是菱形,,,是的中點(diǎn)(1)求證:;(2)已知二面角的余弦值為,求與平面所成角的正弦值20.(12分)已知梯形如圖甲所示,其中,,,四邊形是邊長為1正方形,沿將四邊形折起,使得平面平面,得到如圖乙所示的幾何體(1)求證:平面;(2)若點(diǎn)在線段上,且與平面所成角的正弦值為,求線段的長度.21.(12分)在柯橋古鎮(zhèn)的開發(fā)中,為保護(hù)古橋OA,規(guī)劃在O的正東方向100m的C處向?qū)Π禔B建一座新橋,使新橋BC與河岸AB垂直,并設(shè)立一個以線段OA上一點(diǎn)M為圓心,與直線BC相切的圓形保護(hù)區(qū)(如圖所示),且古橋兩端O和A與圓上任意一點(diǎn)的距離都不小于50m,經(jīng)測量,點(diǎn)A位于點(diǎn)O正南方向25m,,建立如圖所示直角坐標(biāo)系(1)求新橋BC的長度;(2)當(dāng)OM多長時(shí),圓形保護(hù)區(qū)的面積最???22.(10分)在△中,已知、、分別是三內(nèi)角、、所對應(yīng)的邊長,且(Ⅰ)求角的大?。唬á颍┤?,且△的面積為,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】特稱命題的否定是全稱命題【詳解】的否定形式是故選:A2、C【解析】根據(jù)集合交集和補(bǔ)集的概念及運(yùn)算,即可求解.【詳解】由題意,集合,,根據(jù)補(bǔ)集的運(yùn)算,可得,所以.故選:C.3、D【解析】利用復(fù)數(shù)的幾何意義,即可判斷軌跡圖形,再求面積.【詳解】復(fù)數(shù)滿足,表示復(fù)數(shù)對應(yīng)的點(diǎn)的軌跡是以點(diǎn)為圓心,半徑為3的圓,所以圍成圖形的面積等于.故選:D4、A【解析】設(shè)小時(shí)后,相遇地點(diǎn)為,在三角形中根據(jù)題目條件得出,再在三角形中,由勾股定理即可求出.【詳解】以緝私艇為原點(diǎn),建立如下圖所示的直角坐標(biāo)系.圖中走私船所在位置為,設(shè)緝私艇追上走私船的最短時(shí)間為,相遇地點(diǎn)為.則,走私船以的速度向北偏東30°的方向逃竄,60°.因?yàn)?0min后緝私艇才以的速度開始追趕走私船,所以20min走私船行走了,到達(dá).在三角形中,由余弦定理知:,則,所以.在三角形中,,,有:,化簡得:,則.緝私艇追上走私船只的最短時(shí)間為1h.故選:A.點(diǎn)睛】5、B【解析】由等差數(shù)列前項(xiàng)和的性質(zhì)計(jì)算即可.【詳解】由等差數(shù)列前項(xiàng)和的性質(zhì)可得成等差數(shù)列,,即,得.故選:B.6、D【解析】不妨設(shè)雙曲線方程為,則,即設(shè)焦點(diǎn)為,漸近線方程為則又解得.則焦距為.選:D7、B【解析】根據(jù)題意,記該人每天走的路程里數(shù)為,分析可得每天走的路程里數(shù)構(gòu)成以的為公比的等比數(shù)列,由求得首項(xiàng)即可【詳解】解:根據(jù)題意,記該人每天走的路程里數(shù)為,則數(shù)列是以的為公比的等比數(shù)列,又由這個人走了6天后到達(dá)目的地,即,則有,解可得:,故選:B.【點(diǎn)睛】本題考查數(shù)列的應(yīng)用,涉及等比數(shù)列的通項(xiàng)公式以及前項(xiàng)和公式的運(yùn)用,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.8、A【解析】連接,先根據(jù)已知條件表示出,再根據(jù)求得結(jié)果.【詳解】連接,如下圖所示:因?yàn)闉榈闹悬c(diǎn),所以,又因?yàn)闉榈闹悬c(diǎn),所以,所以,故選:A.9、D【解析】根據(jù)不等式的性質(zhì)即可判斷.【詳解】對于A,若,則不等式不成立;對于B,若,則不等式不成立;對于C,若均為負(fù)值,則不等式不成立;對于D,不等號的兩邊同乘負(fù)值,不等號的方向改變,故正確;故選:D【點(diǎn)睛】本題主要考查不等式的性質(zhì),需熟練掌握性質(zhì),屬于基礎(chǔ)題.10、C【解析】不等式性質(zhì)相關(guān)的題型,可以通過舉反例的方式判斷正誤.【詳解】若、均為負(fù)數(shù),因?yàn)?,則,故A錯.若、,則,故B錯.由不等式的性質(zhì)可知,因?yàn)?,所以,故C對.若,因?yàn)?,所以,故D錯.故選:C.11、D【解析】根據(jù)特稱命題的否定為全稱命題,即可得到答案.【詳解】因?yàn)槊},,所以,.故選:D12、B【解析】通過簡單隨機(jī)抽樣和分層抽樣的定義辨析得到選項(xiàng)【詳解】在①中,由于購買能力與收入有關(guān),應(yīng)該采用分層抽樣;在②中,由于個體沒有明顯差別,而且數(shù)目較少,應(yīng)該采用簡單隨機(jī)抽樣故選:B二、填空題:本題共4小題,每小題5分,共20分。13、12【解析】根據(jù)被開方數(shù)的特點(diǎn)求出數(shù)列的通項(xiàng)公式,最后利用通項(xiàng)公式進(jìn)行求解即可.【詳解】數(shù)列中每一項(xiàng)被開方數(shù)分別為:6,10,14,18,22,…,因此這些被開方數(shù)是以6為首項(xiàng),4為公差的等差數(shù)列,設(shè)該等差數(shù)列為,其通項(xiàng)公式為:,設(shè)數(shù)列為,所以,于是有,故答案為:14、11【解析】由題知,且,所以,得或,①當(dāng)時(shí),,此時(shí),,所以函數(shù)單調(diào)遞增無極值,舍去②當(dāng)時(shí),,此時(shí),是函數(shù)的極值點(diǎn),符合題意,∴15、【解析】化簡數(shù)列將問題轉(zhuǎn)化為不等式恒成立問題,再對n分奇數(shù)和偶數(shù)進(jìn)行討論,分別求解出的取值范圍,最后綜合得出結(jié)果.【詳解】根據(jù)題意,,.①當(dāng)n是奇數(shù)時(shí),,即對任意正奇數(shù)n恒成立,當(dāng)時(shí),有最小值1,所以.②當(dāng)n是正偶數(shù)時(shí),,即,又,故對任意正偶數(shù)n都成立,又隨n增大而增大,當(dāng)時(shí),有最小值,即,綜合①②可知.故答案為:.16、相交【解析】把兩個圓的方程化為標(biāo)準(zhǔn)方程,分別找出兩圓的圓心坐標(biāo)和半徑,利用兩點(diǎn)間的距離公式求出兩圓心的距離,與半徑和與差的關(guān)系比較即可知兩圓位置關(guān)系.【詳解】化為,化為,則兩圓圓心分別為:,,半徑分別為:,圓心距為,,所以兩圓相交.故答案為:相交.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)2【解析】(1)首先求出函數(shù)的導(dǎo)函數(shù),即可求出切線的斜率,再利用點(diǎn)斜式求出切線方程;(2)首先求出兩函數(shù)的交點(diǎn)坐標(biāo),再利用定積分及微積分基本定理計(jì)算可得;【小問1詳解】解:因?yàn)?,所以,所以切線的斜率,切線過點(diǎn),切線的方程為,即【小問2詳解】解:由題知,即解得或,即或或,直線與曲線于則所求圖形的面積18、(1),;(2).【解析】(1)根據(jù)已知條件可得出關(guān)于方程,解出的值,可求得的值,即可得出數(shù)列與的通項(xiàng)公式;(2)求得,利用錯位相減法可求得,分析可知數(shù)列為單調(diào)遞增數(shù)列,對分奇數(shù)和偶數(shù)兩種情況討論,結(jié)合參變量分離法可得出實(shí)數(shù)的取值范圍.【詳解】(1)設(shè)等差數(shù)列的公差為,因?yàn)?,,,且是和的等比中?xiàng),所以,整理可得,解得或.若,則,可得,不合乎題意;若,則,可得,合乎題意.所以,;;(2)因?yàn)?,①,②②①得因?yàn)?,即對恒成立,所以?dāng)且,,故數(shù)列為單調(diào)遞增數(shù)列,當(dāng)為偶數(shù)時(shí),,所以;當(dāng)為奇數(shù)時(shí),,所以,即.綜上可得19、(1)證明見解析;(2).【解析】(1)由菱形及線面垂直的性質(zhì)可得、,再根據(jù)線面垂直的判定、性質(zhì)即可證結(jié)論.(2)構(gòu)建空間直角坐標(biāo)系,設(shè),結(jié)合已知確定相關(guān)點(diǎn)坐標(biāo),進(jìn)而求面、面的法向量,結(jié)合已知二面角的余弦值求出參數(shù)t,再根據(jù)空間向量夾角的坐標(biāo)表示求與平面所成角的正弦值【小問1詳解】由平面,平面,則,又是菱形,則,又,所以平面,平面所以E.【小問2詳解】分別以,,為,,軸正方向建立空間直角坐標(biāo)系,設(shè),則,由(1)知:平面的法向量為,令面的法向量為,則,令,可得,因?yàn)槎娼堑挠嘞抑禐椋瑒t,可得,則,設(shè)與平面所成的角為,又,,所以.20、(1)證明過程見解析;(2).【解析】(1)根據(jù)面面垂直的性質(zhì)定理進(jìn)行證明即可;(2)建立空間直角坐標(biāo)系,利用空間向量夾角公式進(jìn)行求解即可.【小問1詳解】∵平面平面,平面平面平面,,∴平面;【小問2詳解】(2)建系如圖:設(shè)平面的法向量,,,,,,則,設(shè),,,解得或(舍),,∴.21、(1)80m;(2).【解析】(1)根據(jù)斜率的公式,結(jié)合解方程組法和兩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論