版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
貴州省畢節(jié)二中2024屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“存在,使得”的否定為()A.存在, B.對任意,C.對任意, D.對任意,2.一個盒子里有3個分別標(biāo)有號碼為1,2,3小球,每次取出一個,記下它的標(biāo)號后再放回盒子中,共取2次,則在兩次取得小球中,標(biāo)號最大值是3的概率為()A. B.C. D.3.已知函數(shù).設(shè)命題的定義域為,命題的值域為.若為真,為假,則實數(shù)的取值范圍是()A. B.C. D.4.已知實數(shù)x,y滿足,則的最大值為()A. B.C.2 D.15.閱讀程序框圖,該算法的功能是輸出A.數(shù)列的第4項 B.數(shù)列的第5項C.數(shù)列的前4項的和 D.數(shù)列的前5項的和6.如圖,和分別是雙曲線的兩個焦點,和是以為圓心,以為半徑的圓與該雙曲線左支的兩個交點,且是等邊三角形,則雙曲線的離心率為()A. B.C. D.7.已知是橢圓與雙曲線的公共焦點,P是它們的一個公共點,且,線段的垂直平分線過,若橢圓的離心率為,雙曲線的離心率為,則的最小值為()A. B.3C.6 D.8.直線分別與軸,軸交于,兩點,點在圓上,則面積的取值范圍是A. B.C. D.9.從1,2,3,4,5中任取2個不同的數(shù),兩數(shù)和為偶數(shù)的概率為()A. B.C. D.10.函數(shù)在的圖象大致為()A. B.C D.11.已知,,且,則()A. B.C. D.12.已知直線交圓于A,B兩點,若點滿足,則直線l被圓C截得線段的長是()A.3 B.2C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則______14.已知、均為正實數(shù),且,則的最小值為___________.15.在平行六面體中,點P是AC與BD的交點,若,且,則___________.16.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的中心為原點,焦點,均在軸上,且,的面積為,則的標(biāo)準(zhǔn)方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的左、右焦點分別為,,過點的直線l交橢圓于A,兩點,的中點坐標(biāo)為.(1)求直線l的方程;(2)求的面積.18.(12分)某項目的建設(shè)過程中,發(fā)現(xiàn)其補(bǔ)貼額x(單位:百萬元)與該項目的經(jīng)濟(jì)回報y(單位:千萬元)之間存在著線性相關(guān)關(guān)系,統(tǒng)計數(shù)據(jù)如下表:補(bǔ)貼額x(單位:百萬元)23456經(jīng)濟(jì)回報y(單位:千萬元)2.5344.56(1)請根據(jù)上表所給的數(shù)據(jù),求出y關(guān)于x的線性回歸直線方程;(2)為高質(zhì)量完成該項目,決定對負(fù)責(zé)該項目的7名工程師進(jìn)行考核.考核結(jié)果為4人優(yōu)秀,3人合格.現(xiàn)從這7名工程師中隨機(jī)抽取3人,用X表示抽取的3人中考核優(yōu)秀的人數(shù),求隨機(jī)變量X的分布列與期望.參考公式:19.(12分)已知雙曲線:的兩條漸近線所成的銳角為且點是上一點(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)若過點的直線與交于,兩點,點能否為線段的中點?并說明理由20.(12分)正四棱柱的底面邊長為2,側(cè)棱長為4.E為棱上的動點,F(xiàn)為棱的中點.(1)證明:;(2)若E為棱上的中點,求直線BE到平面的距離.21.(12分)有一種魚的身體吸收汞,當(dāng)這種魚身體中的汞含量超過其體重的1.00ppm(即百萬分之一)時,人食用它,就會對人體產(chǎn)生危害.現(xiàn)從一批該魚中隨機(jī)選出30條魚,檢驗魚體中的汞含量與其體重的比值(單位:ppm),數(shù)據(jù)統(tǒng)計如下:0.070.240.390.540.610.660.730.820.820.820.870.910.950.980.981.021.021.081.141.201.201.261.291.311.371.401.441.581.621.68(1)求上述數(shù)據(jù)的眾數(shù),并估計這批魚該項數(shù)據(jù)的80%分位數(shù);(2)有A,B兩個水池,兩水池之間有8個完全相同的小孔聯(lián)通,所有的小孔均在水下,且可以同時通過2條魚①將其中汞的含量最低的2條魚分別放入A水池和B水池中,若這2條魚的游動相互獨立,均有的概率進(jìn)入另一水池且不再游回,求這兩條魚最終在同一水池的概率;②將其中汞的含量最低的2條魚都先放入A水池中,若這2條魚均會獨立地且等可能地從其中任意一個小孔由A水池進(jìn)入B水池且不再游回A水池,求這兩條魚由不同小孔進(jìn)入B水池的概率22.(10分)已知函數(shù)滿足.(1)求的解析式,并判斷其奇偶性;(2)若對任意,不等式恒成立,求實數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)特稱命題否定的方法求解,改變量詞,否定結(jié)論.【詳解】由題意可知命題“存在,使得”的否定為“對任意,”.故選:D.2、C【解析】求出兩次取球都沒有取到3的概率,再利用對立事件的概率公式計算作答.【詳解】依題意,每次取到標(biāo)號為3的球的事件為A,則,且每次取球是相互獨立的,在兩次取得小球中,標(biāo)號最大值是3的事件M,其對立事件是兩次都沒有取到標(biāo)號為3的球的事件,,則有,所以在兩次取得小球中,標(biāo)號最大值是3的概率為.故選:C3、C【解析】根據(jù)一元二次不等式恒成立和二次函數(shù)值域可求得為真命題時的取值范圍,根據(jù)和的真假性可知一真一假,分類討論可得結(jié)果.【詳解】若命題為真,則在上恒成立,,;若命題為真,則的值域包含,則或,;為真,為假,一真一假,若真假,則;若假真,則;綜上所述:實數(shù)的取值范圍為.故選:C.4、A【解析】作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求出的最大值.【詳解】作出可行域如圖所示,由可知,此直線可用由直線平移得到,求的最大值,即直線的截距最大,當(dāng)直線過直線的交點時取最大值,即故選:5、B【解析】分析:模擬程序的運(yùn)行,依次寫出每次循環(huán),直到滿足條件,退出循環(huán),輸出A的值即可詳解:模擬程序的運(yùn)行,可得:
A=0,i=1執(zhí)行循環(huán)體,,
不滿足條件,執(zhí)行循環(huán)體,不滿足條件,執(zhí)行循環(huán)體,不滿足條件,執(zhí)行循環(huán)體,不滿足條件,執(zhí)行循環(huán)體,滿足條件,退出循環(huán),輸出A的值為31.觀察規(guī)律可得該算法的功能是輸出數(shù)列{}的第5項.所以B選項是正確的.點睛:模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的A,i的值,當(dāng)i=6時滿足條件,退出循環(huán),輸出A的值,觀察規(guī)律即可得解.6、D【解析】解:,設(shè)F1F2=2c,∵△F2AB是等邊三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故選D7、C【解析】利用橢圓和雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示,再利用均值不等式得到答案【詳解】設(shè)橢圓長軸,雙曲線實軸,由題意可知:,又,,兩式相減,可得:,,.,,當(dāng)且僅當(dāng)時取等號,的最小值為6,故選:C【點睛】本題考查了橢圓雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示是解題的關(guān)鍵,意在考查學(xué)生的計算能力8、A【解析】分析:先求出A,B兩點坐標(biāo)得到再計算圓心到直線距離,得到點P到直線距離范圍,由面積公式計算即可詳解:直線分別與軸,軸交于,兩點,則點P在圓上圓心為(2,0),則圓心到直線距離故點P到直線的距離的范圍為則故答案選A.點睛:本題主要考查直線與圓,考查了點到直線的距離公式,三角形的面積公式,屬于中檔題9、B【解析】利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從中任取個不同的數(shù)的方法有,共種,其中和為偶數(shù)的有共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型概率計算,屬于基礎(chǔ)題.10、D【解析】函數(shù)|在[–2,2]上是偶函數(shù),其圖象關(guān)于軸對稱,因為,所以排除選項;當(dāng)時,有一零點,設(shè)為,當(dāng)時,為減函數(shù),當(dāng)時,為增函數(shù)故選:D.11、D【解析】利用空間向量共線的坐標(biāo)表示可求得、的值,即可得解.【詳解】因為,則,所以,,,因此,.故選:D12、B【解析】由題設(shè)知為圓的圓心且A、B在圓上,根據(jù)已知及向量數(shù)量積的定義求的大小,進(jìn)而判斷△的形狀,即可得直線l被圓C截得線段的長.【詳解】∵點為圓的圓心且A、B在圓上,又,∴,∴,又,∴,故△為等邊三角形,∴直線l被圓C截得線段的長是2故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)導(dǎo)數(shù)的定義求解即可【詳解】由,得,所以,故答案為:14、【解析】由基本不等式可得出關(guān)于的不等式,即可解得的最小值.【詳解】因、均為正實數(shù),由基本不等式可得,整理可得,,,則,解得,當(dāng)且僅當(dāng)時,即當(dāng)時,等號成立,故的最小值為.故答案為:.15、【解析】由向量的運(yùn)算法則,求得,根據(jù),結(jié)合向量的數(shù)量積的運(yùn)算,即可求解.【詳解】由題意可得,,則,故.故答案為:16、【解析】利用待定系數(shù)法列出關(guān)于的方程解出即可得結(jié)果.【詳解】設(shè)的標(biāo)準(zhǔn)方程為,則解得所以的標(biāo)準(zhǔn)方程為故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè),根據(jù)AB的中點坐標(biāo)可得,再利用點差法求得直線的斜率,即可求出直線方程;(2)易得直線過左焦點,聯(lián)立直線和橢圓方程,消,利用韋達(dá)定理求得,再根據(jù)即可得出答案.【小問1詳解】解:設(shè),因為的中點坐標(biāo)為,所以,則,兩式相減得,即,即,所以直線l的斜率為1,所以直線l的方程為,即;【小問2詳解】在直線中,當(dāng)時,,由橢圓:,得,則直線過點,聯(lián)立,消整理得,則,.18、(1)(2)分布列答案見解析,數(shù)學(xué)期望:【解析】(1)根據(jù)表中的數(shù)據(jù)和公式直接求解即可,(2)由題意可知,的可能取值為0,1,2,3,然后求各自對應(yīng)的概率,從而可求得分布列和期望【小問1詳解】.,...【小問2詳解】由題意可知,的可能取值為0,1,2,3.,,分布列為0123.19、(1);(2)點不能為線段的中點,理由見解析.【解析】(1)由漸近線夾角求得一個斜率,再代入點的坐標(biāo),然后可解得得雙曲線方程;(2)設(shè)直線方程為(斜率不存在時另說明),與雙曲線方程聯(lián)立,消元后應(yīng)用韋達(dá)定理,結(jié)合中點坐標(biāo)公式求得,然后難驗證直線與雙曲線是否相交即可得【詳解】解:(1)由題意知,雙曲線的漸近線的傾斜角為30°或60°,即或當(dāng)時,的標(biāo)準(zhǔn)方程為,代入,無解當(dāng)時,的標(biāo)準(zhǔn)方程為,代入,解得故的標(biāo)準(zhǔn)方程為(2)不能是線段的中點設(shè)交點,,當(dāng)直線的斜率不存在時,直線與雙曲線只有一個交點,不符合題意.當(dāng)直線的斜率存在時,設(shè)直線方程為,聯(lián)立方程組,整理得,則,由得,將代入判別式,所以滿足題意的直線也不存在所以點不能為線段的中點20、(1)證明見解析;(2).【解析】(1)根據(jù)給定條件建立空間直角坐標(biāo)系,利用空間位置關(guān)系的向量證明計算作答.(2)利用(1)中坐標(biāo)系,證明平面,再求點B到平面的距離即可作答.【小問1詳解】在正四棱柱中,以點D為原點,射線分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,如圖,則,因E為棱上的動點,則設(shè),,而,,即,所以.【小問2詳解】由(1)知,點,,,,設(shè)平面的一個法向量,則,令,得,顯然有,則,而平面,因此,平面,于是有直線BE到平面的距離等于點B到平面的距離,所以直線BE到平面的距離是.21、(1)眾數(shù)為0.82,8%分位數(shù)約為1.34(2)①;②【解析】(1)根據(jù)題中表格數(shù)據(jù)即可求得答案;(2)①兩條魚有可能均在A水池也可能都在B水池,故可根據(jù)互斥事件的概率結(jié)合相互獨立事件的概率計算求得答案;②先求出這兩條魚由同一個小孔進(jìn)入B水池的概率,然后根據(jù)對立事件的概率計算方法,求得答案.【小問1詳解】由題意知,數(shù)據(jù)的眾數(shù)為0.82,估計這批魚該項數(shù)據(jù)的80%分位數(shù)約為【小問2詳解】①記“兩魚最終均在A水池”為事件A,則,記“兩魚最終均在B水池”為事件B,則,∵事件A與事件B互斥,∴兩條魚最終在同一水池的概率為②記“兩魚同時從第一個小孔通過”為事件,“兩魚同時從第二個小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校學(xué)習(xí)輔導(dǎo)與課外活動管理制度
- 售樓員考試題目及答案
- 養(yǎng)老院膳食營養(yǎng)配餐制度
- 養(yǎng)老院老人營養(yǎng)膳食制度
- 養(yǎng)老院老人生活設(shè)施管理制度
- 七下生物比賽題目及答案
- 六職考試題目及答案
- 門診消防安全制度
- 酒廠食品安全主體責(zé)任制度
- 造價公司制度
- DB21-T 4279-2025 黑果腺肋花楸農(nóng)業(yè)氣象服務(wù)技術(shù)規(guī)程
- 2026廣東廣州市海珠區(qū)住房和建設(shè)局招聘雇員7人考試參考試題及答案解析
- 2026新疆伊犁州新源縣總工會面向社會招聘工會社會工作者3人考試備考題庫及答案解析
- 廣東省汕頭市2025-2026學(xué)年高三上學(xué)期期末語文試題(含答案)(含解析)
- 110接處警課件培訓(xùn)
- DB15∕T 385-2025 行業(yè)用水定額
- 2025四川數(shù)據(jù)集團(tuán)有限公司第四批員工招聘5人參考題庫含答案解析(奪冠)
- 火箭軍教學(xué)課件
- 新媒體運(yùn)營專員筆試考試題集含答案
- 護(hù)理不良事件之血標(biāo)本采集錯誤分析與防控
- 數(shù)字孿生技術(shù)服務(wù)協(xié)議2025
評論
0/150
提交評論