甘肅省天水市一中2023-2024學(xué)年數(shù)學(xué)高二上期末聯(lián)考試題含解析_第1頁(yè)
甘肅省天水市一中2023-2024學(xué)年數(shù)學(xué)高二上期末聯(lián)考試題含解析_第2頁(yè)
甘肅省天水市一中2023-2024學(xué)年數(shù)學(xué)高二上期末聯(lián)考試題含解析_第3頁(yè)
甘肅省天水市一中2023-2024學(xué)年數(shù)學(xué)高二上期末聯(lián)考試題含解析_第4頁(yè)
甘肅省天水市一中2023-2024學(xué)年數(shù)學(xué)高二上期末聯(lián)考試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

甘肅省天水市一中2023-2024學(xué)年數(shù)學(xué)高二上期末聯(lián)考試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則的最小值為()A.1 B.2C.3 D.42.已知圓柱的底面半徑是1,高是2,那么該圓柱的側(cè)面積是()A.2 B.C. D.3.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線的右支上,且,則雙曲線離心率的取值范圍是()A. B.C. D.4.若雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.105.設(shè)是雙曲線的兩個(gè)焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在上且,則的面積為()A. B.3C. D.26.某家庭準(zhǔn)備晚上在餐館吃飯,他們查看了兩個(gè)網(wǎng)站關(guān)于四家餐館的好評(píng)率,如下表所示,考慮每家餐館的總好評(píng)率,他們應(yīng)選擇()網(wǎng)站①評(píng)價(jià)人數(shù)網(wǎng)站①好評(píng)率網(wǎng)站②評(píng)價(jià)人數(shù)網(wǎng)站②好評(píng)率餐館甲100095%100085%餐館乙1000100%200080%餐館丙100090%100090%餐館丁200095%100085%A.餐館甲 B.餐館乙C.餐館丙 D.餐館丁7.拋物線的焦點(diǎn)到準(zhǔn)線的距離為()A. B.C. D.18.在平面上給定相異兩點(diǎn),設(shè)點(diǎn)在同一平面上且滿足,當(dāng)且時(shí),點(diǎn)的軌跡是一個(gè)圓,這個(gè)軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故我們稱這個(gè)圓為阿波羅尼斯圓.現(xiàn)有雙曲線,為雙曲線的左、右頂點(diǎn),為雙曲線的虛軸端點(diǎn),動(dòng)點(diǎn)滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.9.執(zhí)行如圖所示的程序框圖,如果輸入,那么輸出的a值為()A.3 B.27C.-9 D.910.在直三棱柱中,底面是等腰直角三角形,,點(diǎn)在棱上,且,則與平面所成角的正弦值為()A. B.C. D.11.上海世博會(huì)期間,某日13時(shí)至21時(shí)累計(jì)入園人數(shù)的折線圖如圖所示,那么在13時(shí)~14時(shí),14時(shí)~15時(shí),…,20時(shí)~21時(shí)八個(gè)時(shí)段中,入園人數(shù)最多的時(shí)段是()A.13時(shí)~14時(shí) B.16時(shí)~17時(shí)C.18時(shí)~19時(shí) D.19時(shí)~20時(shí)12.如圖,在正方體中,點(diǎn)E是上底面的中心,則異面直線與所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若=,則x的值為_______14.如圖,棱長(zhǎng)為1的正方體,點(diǎn)沿正方形按的方向作勻速運(yùn)動(dòng),點(diǎn)沿正方形按的方向以同樣的速度作勻速運(yùn)動(dòng),且點(diǎn)分別從點(diǎn)A與點(diǎn)同時(shí)出發(fā),則的中點(diǎn)的軌跡所圍成圖形的面積大小是________.15.曲線在處的切線方程是________.16.如果方程表示焦點(diǎn)在軸上的橢圓,那么實(shí)數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知一張紙上畫有半徑為4圓O,在圓O內(nèi)有一個(gè)定點(diǎn)A,且,折疊紙片,使圓上某一點(diǎn)剛好與A點(diǎn)重合,這樣的每一種折法,都留下一條直線折痕,當(dāng)取遍圓上所有點(diǎn)時(shí),所有折痕與的交點(diǎn)形成的曲線記為C.(1)求曲線C的焦點(diǎn)在軸上的標(biāo)準(zhǔn)方程;(2)過曲線C的右焦點(diǎn)(左焦點(diǎn)為)的直線l與曲線C交于不同的兩點(diǎn)M,N,記的面積為S,試求S的取值范圍.18.(12分)已知拋物線的焦點(diǎn)為F,點(diǎn)是拋物線上的點(diǎn),且.(1)求拋物線方程;(2)直線與拋物線交于、兩點(diǎn),且.求△OPQ面積的最小值.19.(12分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值20.(12分)已知函數(shù)f(x)=x3﹣3ax2+2bx在x=處有極大值.(1)求a、b的值;(2)求f(x)在[0,2]上的值域.21.(12分)已知數(shù)列為等差數(shù)列,為其前n項(xiàng)和,若,(1)求數(shù)列的首項(xiàng)和公差;(2)求的最小值.22.(10分)“既要金山銀山,又要綠水青山”.濱江風(fēng)景區(qū)在一個(gè)直徑為100米的半圓形花園中設(shè)計(jì)一條觀光線路(如圖所示).在點(diǎn)與圓弧上的一點(diǎn)(不同于A,B兩點(diǎn))之間設(shè)計(jì)為直線段小路,在直線段小路的兩側(cè)(注意是兩側(cè))種植綠化帶;再?gòu)狞c(diǎn)到點(diǎn)設(shè)計(jì)為沿弧的弧形小路,在弧形小路的內(nèi)側(cè)(注意是一側(cè))種植綠化帶(注:小路及綠化帶的寬度忽略不計(jì)).(1)設(shè)(弧度),將綠化帶總長(zhǎng)度表示為的函數(shù);(2)試確定的值,使得綠化帶總長(zhǎng)度最大.(弧度公式:,其中為弧所對(duì)的圓心角)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由基本不等式求解即可.【詳解】,當(dāng)且僅當(dāng)時(shí),取等號(hào).即所求最小值.故選:D2、D【解析】由圓柱的側(cè)面積公式直接可得.【詳解】故選:D3、C【解析】根據(jù)雙曲線的定義求得,利用可得離心率范圍【詳解】因?yàn)?,又,所以,,又,即,,所以離心率故選:C4、A【解析】由已知設(shè)雙曲線方程為:,代入求得,計(jì)算即可得出離心率.【詳解】雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,設(shè)雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A5、B【解析】由是以P為直角直角三角形得到,再利用雙曲線的定義得到,聯(lián)立即可得到,代入中計(jì)算即可.【詳解】由已知,不妨設(shè),則,因?yàn)椋渣c(diǎn)在以為直徑的圓上,即是以P為直角頂點(diǎn)的直角三角形,故,即,又,所以,解得,所以故選:B【點(diǎn)晴】本題考查雙曲線中焦點(diǎn)三角形面積的計(jì)算問題,涉及到雙曲線的定義,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,是一道中檔題.6、D【解析】根據(jù)給定條件求出各餐館總好評(píng)率,再比較大小作答.【詳解】餐館甲的總好評(píng)率為:,餐館乙的總好評(píng)率為:,餐館丙的好評(píng)率為:,餐館丁的好評(píng)率為:,顯然,所以餐館丁的總好評(píng)率最高.故選:D7、B【解析】由可得拋物線標(biāo)椎方程為:,由焦點(diǎn)和準(zhǔn)線方程即可得解.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,所以拋物線的焦點(diǎn)為,準(zhǔn)線方程為,所以焦點(diǎn)到準(zhǔn)線的距離為,故選:B【點(diǎn)睛】本題考了拋物線標(biāo)準(zhǔn)方程,考查了焦點(diǎn)和準(zhǔn)線相關(guān)基本量,屬于基礎(chǔ)題.8、C【解析】先求動(dòng)點(diǎn)的軌跡方程,再根據(jù)面積的最大值求得,根據(jù)的面積最小值求,由此可求雙曲線的離心率.【詳解】設(shè),,,依題意得,即,兩邊平方化簡(jiǎn)得,所以動(dòng)點(diǎn)的軌跡是圓心為,半徑的圓,當(dāng)位于圓的最高點(diǎn)時(shí)的面積最大,所以,解得;當(dāng)位于圓的最左端時(shí)的面積最小,所以,解得,故雙曲線的離心率為.故選:C.9、B【解析】分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)累乘值,并判斷滿足時(shí)輸出的值【詳解】解:模擬執(zhí)行程序框圖,可得,時(shí),不滿足條件,;不滿足條件,;不滿足條件,;滿足條件,退出循環(huán),輸出的值為27故選:10、C【解析】取AC的中點(diǎn)M,過點(diǎn)M作,且使得,進(jìn)而證明平面,然后判斷出是與平面所成的角,最后求出答案.【詳解】如圖,取AC的中點(diǎn)M,因?yàn)?,則,過點(diǎn)M作,且使得,則四邊形BDNM是平行四邊形,所以.由題意,平面ABC,則平面ABC,而平面ABC,所以,又,所以平面,而所以平面,連接DA,NA,則是與平面所成的角.而,于是,.故選:.11、B【解析】要找入園人數(shù)最多的,只要根據(jù)函數(shù)圖象找出圖象中變化最大的即可【詳解】結(jié)合函數(shù)的圖象可知,在13時(shí)~14時(shí),14時(shí)~15時(shí),…,20時(shí)~21時(shí)八個(gè)時(shí)段中,圖象變化最快的為16到17點(diǎn)之間故選:B.【點(diǎn)睛】本題考查折線統(tǒng)計(jì)圖的實(shí)際應(yīng)用,屬于基礎(chǔ)題.12、B【解析】建立空間直角坐標(biāo)系,利用向量夾角求解.【詳解】以為原點(diǎn),為軸正方向建立空間直角坐標(biāo)系如圖所示,設(shè)正方體棱長(zhǎng)為2,所以,所以異面直線與所成角的余弦值為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、4或9.【解析】分析:先根據(jù)組合數(shù)性質(zhì)得,解方程得結(jié)果詳解:因?yàn)椋?,所以因此點(diǎn)睛:組合數(shù)性質(zhì):14、##【解析】畫出符合要求的圖形,觀察得到軌跡是菱形,并進(jìn)行充分性和必要性兩方面的證明,并求解出軌跡圖形的面積.【詳解】如圖,分別是正方形ABCD,,的中心,下面進(jìn)行證明:菱形EFGC的周界即為動(dòng)線段PQ的中點(diǎn)H的軌跡,首先證明:如果點(diǎn)H是動(dòng)線段PQ的中點(diǎn),那么點(diǎn)H必在菱形EFGC的周界上,分兩種情況證明:(1)P,Q分別在某一個(gè)定角的兩邊上,不失一般性,設(shè)P從B到C,而Q同時(shí)從到C,由于速度相同,所以PQ必平行于,故PQ的中點(diǎn)H必在上;(2)P,Q分別在兩條異面直線上,不失一般性,設(shè)P從A到B,同時(shí)Q從到,由于速度相同,則,由于H為PQ的中點(diǎn),連接并延長(zhǎng),交底面ABCD于點(diǎn)T,連接PT,則平面與平面交線是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,從而T在AC上,可以證明FH∥AC,GH∥AC,DG∥AC,基于平行線的唯一性,顯然H在DG上,綜合(1)(2)可證明,線段PQ的中點(diǎn)一定在菱形EFGC的周界上;下面證明:如果點(diǎn)H在菱形EFGC的周界上,則點(diǎn)H必定是符合條件的線段的中點(diǎn).也分兩種情況進(jìn)行證明:(1)H在CG或CE上,過點(diǎn)H作PQ∥(或BD),而與BC及(或CD及BC)分別相交于P和Q,由相似的性質(zhì)可得:PH=QH,即H是PQ的中點(diǎn),同時(shí)可證:BP=(或BQ=DP),因此P、Q符合題設(shè)條件(2)H在EF或FG上,不失一般性,設(shè)H在FG上,連接并延長(zhǎng),交平面AC于點(diǎn)T,顯然T在AC上,過T作TP∥CB于點(diǎn)P,則TP∥,在平面上,連接PH并延長(zhǎng),交于點(diǎn)Q,在三角形中,G是的中點(diǎn),∥AC,則H是的中點(diǎn),于是,從而有,又因?yàn)門P∥CB,,所以,從而,因此P,Q符合題設(shè)條件.由(1)(2),如果H是菱形EFGC周界上的任一點(diǎn),則H必是符合題設(shè)條件的動(dòng)線段PQ的中點(diǎn),證畢.因?yàn)樗倪呅螢榱庑危渲?,所以邊長(zhǎng)為且,為等邊三角形,,所以面積.故答案為:【點(diǎn)睛】對(duì)于立體幾何軌跡問題,要畫出圖形,并要善于觀察,利用所學(xué)的立體幾何方面的知識(shí),大膽猜測(cè),小心驗(yàn)證,對(duì)于多種情況的,要畫出相應(yīng)的圖形,注意分類討論.15、【解析】求出函數(shù)的導(dǎo)函數(shù),把代入即可得到切線的斜率,然后根據(jù)和斜率寫出切線的方程即可.【詳解】解:由函數(shù)知,把代入得到切線的斜率則切線方程為:,即.故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題16、【解析】化簡(jiǎn)橢圓的方程為標(biāo)準(zhǔn)形式,列出不等式,即可求解.【詳解】由題意,方程可化為,因?yàn)榉匠瘫硎窘裹c(diǎn)在軸上的橢圓,可得,解得,實(shí)數(shù)的取值范圍是.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)﹒【解析】(1)根據(jù)題意,作出圖像,可得,由此可知M的軌跡C為以O(shè)、A為焦點(diǎn)的橢圓;(2)分為l斜率存在和不存在時(shí)討論,斜率存在時(shí),直線方程和橢圓方程聯(lián)立,用韋達(dá)定理表示的面積,根據(jù)變量范圍可求面積的最大值﹒【小問1詳解】以O(shè)A中點(diǎn)G坐標(biāo)原點(diǎn),OA所在直線為x軸建立平面直角坐標(biāo)系,如圖:∴可知,,設(shè)折痕與和分別交于M,N兩點(diǎn),則MN垂直平分,∴,又∵,∴,∴M的軌跡是以O(shè),A為焦點(diǎn),4為長(zhǎng)軸的橢圓.∴M的軌跡方程C為;【小問2詳解】設(shè),,則的周長(zhǎng)為當(dāng)軸時(shí),l的方程為,,,當(dāng)l與x軸不垂直時(shí),設(shè),由得,∵>0,∴,,,令,則,,∵,∴,∴.綜上可知,S的取值范圍是18、(1);(2).【解析】(1)根據(jù)拋物線的定義列方程,由此求得,進(jìn)而求得拋物線方程.(2)聯(lián)立直線的方程和拋物線方程,寫出根與系數(shù)關(guān)系,結(jié)合求得的值,求得三角形面積的表達(dá)式,進(jìn)而求得面積的最小值.【詳解】(1)依題意.(2)與聯(lián)立得,,得,又,又m>0,m=4.且,,當(dāng)k=0時(shí),S最小,最小值為.19、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以為坐標(biāo)原點(diǎn),以,所在直線分別為,軸,以過點(diǎn)垂直于平面的直線為軸建立空間直角坐標(biāo)系.求出平面的一個(gè)法向量、平面的法向量,由二面角的空間向量求法可得答案.【小問1詳解】因?yàn)樗倪呅问堑妊菪?,,所以,所以,即因?yàn)槠矫?,所以,又因?yàn)?,所以平面,因?yàn)槠矫妫云矫嫫矫妗拘?詳解】以為坐標(biāo)原點(diǎn),以,所在直線分別為,軸,以過點(diǎn)垂直于平面的直線為軸建立如圖所示的空間直角坐標(biāo)系設(shè),則,所以,,,由(1)可知平面的一個(gè)法向量為設(shè)平面的法向量為,因?yàn)?,,所以得令,則,,所以,則,所以平面與平面的夾角的余弦值為.20、(1)(2)【解析】(1)由于在點(diǎn)處有極小值,所以,從而可求出、的值;(2)由(1)可得,得在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,從而可求出其值域.【小問1詳解】因?yàn)楹瘮?shù)在處有極大值,所以,①且②聯(lián)立①②得:;【小問2詳解】由(1)得,所以,由得;由得,所以,函數(shù)區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;又,所以在上的值域?yàn)?21、(1)首項(xiàng)為-2,公差為1;(2).【解析】(1)設(shè)出等差數(shù)列的公差,再結(jié)合前n項(xiàng)和公式列式計(jì)算作答.(2)由(1)的結(jié)論,探求數(shù)列的性質(zhì)即可推理計(jì)算作答.【小問1詳解】設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論