廣西壯族自治區(qū)來賓市2023-2024學年高二上數學期末達標檢測試題含解析_第1頁
廣西壯族自治區(qū)來賓市2023-2024學年高二上數學期末達標檢測試題含解析_第2頁
廣西壯族自治區(qū)來賓市2023-2024學年高二上數學期末達標檢測試題含解析_第3頁
廣西壯族自治區(qū)來賓市2023-2024學年高二上數學期末達標檢測試題含解析_第4頁
廣西壯族自治區(qū)來賓市2023-2024學年高二上數學期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西壯族自治區(qū)來賓市2023-2024學年高二上數學期末達標檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓與拋物線的準線相切,則實數p的值為()A.2 B.6C.3或8 D.2或62.“,”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知、是橢圓的兩個焦點,P為橢圓C上一點,且,若的面積為9,則的值為()A.1 B.2C.3 D.44.若圓C與直線:和:都相切,且圓心在y軸上,則圓C的方程為()A. B.C. D.5.已知集合,,若,則=()A.{1,2,3} B.{1,2,3,4}C.{0,1,2} D.{0,1,2,3}6.的三個內角A,B,C所對的邊分別為a,b,c,若,則()A. B.C. D.7.已知橢圓方程為,則該橢圓的焦距為()A.1 B.2C. D.8.直線的斜率是()A. B.C. D.9.已知兩直線方程分別為l1:x+y=1,l2:ax+2y=0,若l1⊥l2,則a=()A2 B.-2C. D.10.如圖,,是平面上兩點,且,圖中的一系列圓是圓心分別為,的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,A,B,C,D,E是圖中兩組同心圓的部分公共點.若點A在以,為焦點的橢圓M上,則()A.點B和C都在橢圓M上 B.點C和D都在橢圓M上C.點D和E都在橢圓M上 D.點E和B都在橢圓M上11.如右圖,一個直徑為1的小圓沿著直徑為2的大圓內壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點.那么,當小圓這樣滾過大圓內壁的一周,點M,N在大圓內所繪出的圖形大致是A. B.C. D.12.己知F為拋物線的焦點,過F作兩條互相垂直的直線,,直線與C交于A、B兩點,直線與C交于D、E兩點,則的最小值為()A.24 B.22C.20 D.16二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知橢圓E的方程為(a>b>0),A為橢圓的左頂點,B,C在橢圓上,若四邊形OABC為平行四邊形,且∠OAB=30°,則橢圓的離心率等于________14.命題“,”為假命題,則實數a的取值范圍是______15.正四棱柱的高為底面邊長的倍,則其體對角線與底面所成角的大小為_________.16.直線的傾斜角為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知各項為正數的等比數列中,,.(1)求數列通項公式;(2)設,求數列的前n項和.18.(12分)已知等差數列的首項為2,公差為8.在中每相鄰兩項之間插入三個數,使它們與原數列的項一起構成一個新的等差數列.(1)求數列的通項公式;(2)若,,,,是從中抽取的若干項按原來的順序排列組成的一個等比數列,,,令,求數列的前項和.19.(12分)已知直線經過兩條直線和的交點,且與直線垂直(1)求直線的一般式方程;(2)若圓的圓心為點,直線被該圓所截得的弦長為,求圓的標準方程20.(12分)在△ABC中,角A,B,C所對的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀21.(12分)已知等差數列和正項等比數列滿足(1)求的通項公式;(2)求數列的前n項和22.(10分)如圖,在長方體中,,,,M為上一點,且(1)求點到平面的距離;(2)求二面角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由拋物線準線與圓相切,結合拋物線方程,令求切線方程且拋物線準線方程為,即可求參數p.【詳解】圓的標準方程為:,故當時,有或,所以或,得或6故選:D2、A【解析】由正切函數性質,應用定義法判斷條件間充分、必要關系.【詳解】當,,則,當時,,.∴“,”是“”的充分不必要條件.故選:A3、C【解析】根據橢圓定義,和條件列式,再通過變形計算求解.【詳解】由條件可知,,即,解得:.故選:C【點睛】本題考查橢圓的定義,焦點三角形的性質,重點考查轉化與變形,計算能力,屬于基礎題型.4、B【解析】首先求出兩平行直線間的距離,即可求出圓的半徑,設圓心坐標為,,利用圓心到直線的距離等于半徑得到方程,求出的值,即可得解;【詳解】解:因為直線:和:的距離,由圓C與直線:和:都相切,所以圓的半徑為,又圓心在軸上,設圓心坐標為,,所以圓心到直線的距離等于半徑,即,所以或(舍去),所以圓心坐標為,故圓的方程為;故選:B5、D【解析】根據題意,解不等式求出集合,由,得,進而求出,從而可求出集合,最后根據并集的運算即可得出答案.【詳解】解:由題可知,,而,即,解得:,又由于,得,因為,則,所以,解得:,所以,所以.故選:D.【點睛】本題考查集合的交集的定義和并集運算,屬于基礎題.6、D【解析】利用正弦定理邊化角,角化邊計算即可.【詳解】由正弦定理邊化角得,,再由正弦定理角化邊得,即故選:D.7、B【解析】根據橢圓中之間的關系,結合橢圓焦距的定義進行求解即可.【詳解】由橢圓的標準方程可知:,則焦距為,故選:B.8、D【解析】把直線方程化為斜截式即得【詳解】直線方程的斜截式為,斜率為故選:D9、B【解析】直接利用直線垂直公式計算得到答案.【詳解】因為l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故選:【點睛】本題考查了根據直線垂直計算參數,屬于簡單題.10、C【解析】根據橢圓的定義判斷即可求解.【詳解】因為,所以橢圓M中,因為,,,,所以D,E在橢圓M上.故選:C11、A【解析】如圖:如圖,取小圓上一點,連接并延長交大圓于點,連接,,則在小圓中,,在大圓中,,根據大圓的半徑是小圓半徑的倍,可知的中點是小圓轉動一定角度后的圓心,且這個角度恰好是,綜上可知小圓在大圓內壁上滾動,圓心轉過角后的位置為點,小圓上的點,恰好滾動到大圓上的也就是此時的小圓與大圓的切點.而在小圓中,圓心角(是小圓與的交點)恰好等于,則,而點與點其實是同一個點在不同時刻的位置,則可知點與點是同一個點在不同時刻的位置.由于的任意性,可知點的軌跡是大圓水平的這條直徑.類似的可知點的軌跡是大圓豎直的這條直徑.故選A.12、A【解析】由拋物線的性質:過焦點的弦長公式計算可得.【詳解】設直線,的斜率分別為,由拋物線的性質可得,,所以,又因為,所以,所以,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先利用橢圓的對稱性和為平行四邊形,可以得出、兩點是關于軸對稱,進而得到;設,,,從而求出,然后由,利用,求得,最后根據得出離心率【詳解】解:是與軸重合的,且四邊形為平行四邊形,所以、兩點的縱坐標相等,、的橫坐標互為相反數,、兩點是關于軸對稱的由題知:四邊形為平行四邊形,所以可設,,代入橢圓方程解得:設為橢圓的右頂點,,四邊形為平行四邊形對點:解得:根據:得:故答案為:14、【解析】寫出原命題的否定,再利用二次型不等式恒成立求解作答.【詳解】因命題“,”為假命題,則命題“,”為真命題,當時,恒成立,則,當時,必有,解得,所以實數a的取值范圍是.故答案為:15、##【解析】如圖所示,其體對角線與底面所成角為,解三角形即得解.【詳解】解:如圖所示,設,所以.由題得平面,則其體對角線與底面所成角為,因為,所以.故答案為:16、【解析】把直線方程化為斜截式,再利用斜率與傾斜角的關系即可得出【詳解】設直線的傾斜角為由直線化為,故,又,故,故答案為【點睛】一般地,如果直線方程的一般式為,那么直線的斜率為,且,其中為直線的傾斜角,注意它的范圍是三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據條件求出即可;(2),然后利用等差數列的求和公式求出答案即可.【詳解】(1)且,,(2)18、(1);(2)【解析】(1)由題意在中每相鄰兩項之間插入三個數,使它們與原數列的項一起構成一個新的等差數列,可知的公差,進而可求出其通項公式;(2)根據題意可得,進而得到,再代入中得,利用錯位相減即可求出前項和.【小問1詳解】由于等差數列的公差為8,在中每相鄰兩項之間插入三個數,使它們與原數列的項一起構成一個新的等差數列,則的公差,的首項和首項相同為2,則數列的通項公式為.【小問2詳解】由于,是等比數列的前兩項,且,,則,則等比數列的公比為3,則,即,.①.②.①減去②得..19、(1)(2)【解析】(1)由題意求出兩直線的交點,再求出所求直線的斜率,用點斜式寫出直線的方程;(2)根據題意求出圓的半徑,由圓心寫出圓的標準方程【小問1詳解】解:由題意知,解得,直線和的交點為;設直線的斜率為,與直線垂直,;直線的方程為,化為一般形式為;【小問2詳解】解:設圓的半徑為,則圓心為到直線的距離為,由垂徑定理得,解得,圓的標準方程為20、(1)(2)等邊三角形【解析】(1)把化為,然后由正弦定理化邊為角,利用兩角和的正弦公式、誘導公式可求得;(2)由余弦定理及三角形面積公式可得,從而得出三角形為等邊三角形【小問1詳解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小問2詳解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以該三角形為等邊三角形21、(1);(2)【解析】(1)根據條件列公差與公比方程組,解得結果,代入等差數列通項公式即可;(2)根據等比數列求和公式直接求解.【詳解】(1)設等差數列公差為,正項等比數列公比為,因為,所以因此;(2)數列的前n項和【點睛】本題考查等差數列以及等比數列通項公式、等比數列求和公式,考查基本分析求解能力,屬基礎題.22、(1)(2)【解析】(1)以A為原點,以AB、AD、所在直線分別為x軸、y軸、z

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論