吉林市普通中學2023-2024學年高二數(shù)學第一學期期末考試模擬試題含解析_第1頁
吉林市普通中學2023-2024學年高二數(shù)學第一學期期末考試模擬試題含解析_第2頁
吉林市普通中學2023-2024學年高二數(shù)學第一學期期末考試模擬試題含解析_第3頁
吉林市普通中學2023-2024學年高二數(shù)學第一學期期末考試模擬試題含解析_第4頁
吉林市普通中學2023-2024學年高二數(shù)學第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林市普通中學2023-2024學年高二數(shù)學第一學期期末考試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等比數(shù)列中,,則等于()A. B.C. D.2.設(shè)平面的法向量為,平面的法向量為,若,則的值為()A.-5 B.-3C.1 D.73.已知數(shù)列的前n項和為,,,則()A. B.C. D.4.古希臘數(shù)學家歐幾里得在《幾何原本》中描述了圓錐曲線共性,并給出了圓錐曲線的統(tǒng)一定義,只可惜對這一定義歐幾里得沒有給出證明.經(jīng)過了500年,到了3世紀,希臘數(shù)學家帕普斯在他的著作《數(shù)學匯篇》中,完善了歐幾里得關(guān)于圓錐曲線的統(tǒng)一定義,并對這一定義進行了證明.他指出,到定點的距離與到定直線的距離的比是常數(shù)的點的軌跡叫做圓錐曲線;當時,軌跡為橢圓;當時,軌跡為拋物線;當時,軌跡為雙曲線.現(xiàn)有方程表示的曲線是雙曲線,則的取值范圍為()A. B.C. D.5.在平面直角坐標系中,線段的兩端點,分別在軸正半軸和軸正半軸上滑動,若圓上存在點是線段的中點,則線段長度的最小值為()A.4 B.6C.8 D.106.如果直線與直線垂直,那么的值為()A. B.C. D.27.設(shè)滿足則的最大值為A. B.2C.4 D.168.已知是定義在上的函數(shù),且對任意都有,若函數(shù)的圖象關(guān)于點對稱,且,則()A. B.C. D.9.已知動圓過定點,并且與定圓外切,則動圓的圓心的軌跡是()A.拋物線 B.橢圓C.雙曲線 D.雙曲線的一支10.經(jīng)過點且圓心是兩直線與的交點的圓的方程為()A. B.C. D.11.直線的傾斜角為()A. B.C. D.12.若等差數(shù)列,其前n項和為,,,則()A.10 B.12C.14 D.16二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),是雙曲線的兩個焦點,P是雙曲線上任意一點,過作平分線的垂線,垂足為M,則點M到直線的距離的最小值是___14.曲線在點(1,1)處的切線方程為_____15.已知,,,…,為拋物線:上的點,為拋物線的焦點.在等比數(shù)列中,,,,…,.則的橫坐標為__________16.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列中,,___________,其中.(1)求數(shù)列的通項公式;(2)設(shè),求證:數(shù)列是等比數(shù)列;(3)求數(shù)列的前n項和.從①前n項和,②,③且,這三個條件中任選一個,補充在上面的問題中并作答.18.(12分)已知函數(shù)(1)當時,求曲線在點處的切線方程;(2)若對任意的,恒成立,求實數(shù)a的取值范圍19.(12分)已知雙曲線C:(a>0,b>0)的離心率為,且雙曲線的實軸長為2(1)求雙曲線C的方程;(2)已知直線x-y+m=0與雙曲線C交于不同的兩點A、B,且線段AB中點在圓x2+y2=17上,求m的值20.(12分)已知斜率為1的直線交拋物線:()于,兩點,且弦中點的縱坐標為2.(1)求拋物線的標準方程;(2)記點,過點作兩條直線,分別交拋物線于,(,不同于點)兩點,且的平分線與軸垂直,求證:直線的斜率為定值.21.(12分)如圖,在四棱錐中,底面為正方形,,直線垂直于平面分別為的中點,直線與相交于點.(1)證明:與不垂直;(2)求二面角的余弦值.22.(10分)已知數(shù)列的前n項和為,且滿足(1)證明數(shù)列是等比數(shù)列;(2)若數(shù)列滿足,證明數(shù)列的前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù),然后與,可得,最后簡單計算,可得結(jié)果.【詳解】在等比數(shù)列中,由所以,又,所以所以故選:C【點睛】本題考查等比數(shù)列的性質(zhì),重在計算,當,在等差數(shù)列中有,在等比數(shù)列中,靈活應(yīng)用,屬基礎(chǔ)題.2、C【解析】根據(jù),可知向量建立方程求解即可.【詳解】由題意根據(jù),可知向量,則有,解得.故選:C3、D【解析】根據(jù)給定遞推公式求出即可計算作答.【詳解】因數(shù)列的前n項和為,,,則,,,所以.故選:D4、C【解析】對方程進行化簡可得雙曲線上一點到定點與定直線之比為常數(shù),進而可得結(jié)果.【詳解】已知方程可以變形為,即,∴其表示雙曲線上一點到定點與定直線之比為常數(shù),又由,可得,故選:C.5、C【解析】首先求點的軌跡,將問題轉(zhuǎn)化為兩圓有交點,即根據(jù)兩圓的位置關(guān)系,求參數(shù)的取值范圍.【詳解】設(shè),,的中點為,則,故點的軌跡是以原點為圓心,為半徑的圓,問題轉(zhuǎn)化為圓與圓有交點,所以,,即,解得:,所以線段長度的最小值為.故選:C6、A【解析】根據(jù)兩條直線垂直列方程,化簡求得的值.【詳解】由于直線與直線垂直,所以.故選:A7、C【解析】可行域如圖,則直線過點A(0,1)取最大值2,則的最大值為4,選C.點睛:線性規(guī)劃的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一,準確無誤地作出可行域;二,畫目標函數(shù)所對應(yīng)的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數(shù)的最大或最小值會在可行域的端點或邊界上取得.8、D【解析】令,代入可得,即得,再由函數(shù)的圖象關(guān)于點對稱,判斷得函數(shù)的圖象關(guān)于點對稱,即,則化簡可得,即函數(shù)的周期為,從而代入求解.【詳解】令,得,即,所以,因為函數(shù)的圖象關(guān)于點對稱,所以函數(shù)的圖象關(guān)于點對稱,即,所以,即,可得,則,故選:D.第II卷(非選擇題9、D【解析】結(jié)合雙曲線定義的有關(guān)知識確定正確選項.【詳解】圓圓心為,半徑為,依題意可知,結(jié)合雙曲線的定義可知,的軌跡為雙曲線的一支.故選:D10、B【解析】求出圓心坐標和半徑后,直接寫出圓的標準方程.【詳解】由得,即所求圓的圓心坐標為.由該圓過點,得其半徑為1,故圓的方程為.故選:B.【點睛】本題考查了圓的標準方程,屬于基礎(chǔ)題.11、D【解析】由直線斜率概念可寫出傾斜角的正切值,進而可求出傾斜角.【詳解】因為直線的斜率為,所以傾斜角.故選D【點睛】本題主要考查直線的傾斜角,由斜率的概念,即可求出結(jié)果.12、B【解析】由等差數(shù)列前項和的性質(zhì)計算即可.【詳解】由等差數(shù)列前項和的性質(zhì)可得成等差數(shù)列,,即,得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】構(gòu)造全等三角形,結(jié)合雙曲線定義,求得點的軌跡方程,再根據(jù)直線與圓的位置關(guān)系,即可求得點到直線距離的最小值.【詳解】延長交的延長線于點,如下所示:因為平分,且,故△△,則,又,則,又在△中,分別為的中點,故可得;設(shè)點的坐標為,則,即點在圓心為,半徑的圓上,圓心到直線的距離,故點到直線距離的最小值為.故答案為:.【點睛】本題考查雙曲線的定義,以及直線與圓的位置關(guān)系,解決問題的關(guān)鍵在于通過幾何關(guān)系求得點的軌跡方程,屬中檔題.14、【解析】根據(jù)導數(shù)的幾何意義求出切線的斜率,再根據(jù)點斜式可求出結(jié)果.【詳解】因為,所以曲線在點(1,1)處的切線的斜率為,所以所求切線方程為:,即.故答案為:.15、【解析】利用在拋物線上可求得,結(jié)合等比數(shù)列的公比可求得,利用拋物線的焦半徑公式即可求得結(jié)果.【詳解】在拋物線上,,解得:,拋物線;數(shù)列為等比數(shù)列,又,,公比,,即,解得:,即的橫坐標為.故答案為:.16、【解析】設(shè)點為,由拋物線定義知,,求出點P坐標代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設(shè)點為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:【點睛】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、常考題型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析(3)【解析】(1)選①,根據(jù)與的關(guān)系即可得出答案;選②,根據(jù)與的關(guān)系結(jié)合等差數(shù)列的定義即可得出答案;選③,利用等差中項法可得數(shù)列是等差數(shù)列,再求出公差,即可得解;(2)求出數(shù)列的通項公式,再根據(jù)等比數(shù)列的定義即可得證;(3)求出數(shù)列的通項公式,再利用錯位相減法即可得出答案.【小問1詳解】解:選①,當時,,當時,也成立,所以;選②,因為,所以,所以數(shù)列是以為公差的等差數(shù)列,所以;選③且,因為,所以數(shù)列是等差數(shù)列,公差,所以;【小問2詳解】解:由(1)得,則,所以數(shù)列是以為首項,為公比的等比數(shù)列;【小問3詳解】解:,,①,②由①②得,所以.18、(1)(2)【解析】(1)先求導,由到數(shù)值求出斜率,最后根據(jù)點斜式求出方程即可;(2)采用分離常數(shù)法,轉(zhuǎn)化為求新函數(shù)的值域即可.【小問1詳解】時,,,則,,所以在點處的切線方程為,即【小問2詳解】對任意的,恒成立,即,對任意的,令,即,則,因為,,所以當時,,在區(qū)間上單調(diào)遞減,當時,,在區(qū)間上單調(diào)遞增,則,所以19、(1);(2)【解析】(1)由實軸長求得,再由離心率得,從而求得得雙曲線方程;(2)直線方程與雙曲線方程聯(lián)立方程組,消元后應(yīng)用韋達定理求得中點坐標,代入圓方程可求得值【小問1詳解】由已知,,又,所以,,所以雙曲線方程為;【小問2詳解】由,得,恒成立,設(shè),,中點為,所以,,,又在圓x2+y2=17上,所以,20、(1);(2)見解析.【解析】(1)涉及中點弦,用點差法處理即可求得,進而求得拋物線方程;(2)由的平分線與軸垂直,可知直線,的斜率存在,且斜率互為相反數(shù),且不等于零,設(shè),直線,則直線分別和拋物線方程聯(lián)立,解得利用,結(jié)合直線方程,即可證得直線的斜率為定值.【詳解】(1)設(shè),則,兩式相減,得:由弦中點縱坐標為2,得,故.所以拋物線的標準方程.(2)由的平分線與軸垂直,可知直線,的斜率存在,且斜率互為相反數(shù),且不等于零,設(shè)直線由得由點在拋物線上,可知上述方程的一個根為.即,同理.直線的斜率為定值.【點睛】本題考查應(yīng)用點差法處理中點弦問題,直線與拋物線中,斜率為定值問題,考查分析問題的能力,考查學生的計算能力,難度較難.21、(1)證明見解析;(2).【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,求出點的坐標,計算得出,即可證得結(jié)論成立;或利用反證法;(2)利用空間向量法即求.【小問1詳解】方法一:如圖以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則、、、、設(shè),因為,,因為,所以,得,即點,因為,,所以,故與不垂直方法二:假設(shè)與垂直,又直線平面平面,所以.而與相交,所以平面又平面,從而又已知是正方形,所以與不垂直,這產(chǎn)生矛盾,所以假設(shè)不成立,即與不垂直得證.【小問2詳解】設(shè)平面的法向量為,又,因為,所以,令,得.設(shè)平面的法向量為,因為,所以,令,得.因為.顯然

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論