陜西省西安市藍(lán)田縣2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁(yè)
陜西省西安市藍(lán)田縣2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁(yè)
陜西省西安市藍(lán)田縣2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁(yè)
陜西省西安市藍(lán)田縣2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁(yè)
陜西省西安市藍(lán)田縣2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

陜西省西安市藍(lán)田縣2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)在上的最小值為()A. B.C.-1 D.2.設(shè)是可導(dǎo)函數(shù),當(dāng),則()A.2 B.C. D.3.若正三棱柱的所有棱長(zhǎng)都相等,D是的中點(diǎn),則直線AD與平面所成角的正弦值為A. B.C. D.4.拋物線的焦點(diǎn)到準(zhǔn)線的距離是A.2 B.4C. D.5.已知正實(shí)數(shù)a,b滿足,若不等式對(duì)任意的實(shí)數(shù)x恒成立,則實(shí)數(shù)m的取值范圍是()A. B.C. D.6.已知焦點(diǎn)在軸上的雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C.2 D.7.已知的周長(zhǎng)等于10,,通過(guò)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,頂點(diǎn)的軌跡方程可以是()A. B.C. D.8.如圖,在直三棱柱中,,,E是的中點(diǎn),則直線BC與平面所成角的正弦值為()A. B.C. D.9.“五一”期間,甲、乙、丙三個(gè)大學(xué)生外出旅游,已知一人去北京,一人去兩安,一人去云南.回來(lái)后,三人對(duì)去向作了如下陳述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事實(shí)是甲、乙、丙三人陳述都只對(duì)了一半(關(guān)于去向的地點(diǎn)僅對(duì)一個(gè)).根據(jù)以上信息,可判斷下面說(shuō)法中正確的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南10.為推動(dòng)黨史學(xué)習(xí)教育各項(xiàng)工作扎實(shí)開(kāi)展,營(yíng)造“學(xué)黨史、悟思想、辦實(shí)事、開(kāi)新局”的濃厚氛圍,某校黨委計(jì)劃將中心組學(xué)習(xí)、專(zhuān)題報(bào)告會(huì)、黨員活動(dòng)日、主題班會(huì)、主題團(tuán)日這五種活動(dòng)分5個(gè)階段安排,以推動(dòng)黨史學(xué)習(xí)教育工作的進(jìn)行,若主題班會(huì)、主題團(tuán)日這兩個(gè)階段相鄰,且中心組學(xué)習(xí)必須安排在前兩階段并與黨員活動(dòng)日不相鄰,則不同的安排方案共有()A.10種 B.12種C.16種 D.24種11.若,則下列不等式不能成立是()A. B.C. D.12.直線關(guān)于直線對(duì)稱(chēng)的直線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知A(1,3),B(5,-2),點(diǎn)P在x軸上,則使|AP|-|BP|取最大值的點(diǎn)P的坐標(biāo)是________14.有公共焦點(diǎn),的橢圓和雙曲線的離心率分別為,,點(diǎn)為兩曲線的一個(gè)公共點(diǎn),且滿足,則的值為_(kāi)_____15.過(guò)點(diǎn)作圓的兩條切線,切點(diǎn)為A,B,則直線的一般式方程為_(kāi)__________.16.若,滿足約束條件,則的最小值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知等差數(shù)列的前n項(xiàng)和為Sn,S9=81,,求:(1)Sn;(2)若S3、、Sk成等比數(shù)列,求k18.(12分)如圖,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,(1)求證:平面ACF;(2)在線段PB上是否存在一點(diǎn)H,使得CH與平面ACF所成角的正弦值為?若存在,求出線段PH的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由19.(12分)已知三棱柱的側(cè)棱垂直于底面,,,,,分別是,的中點(diǎn).(Ⅰ)證明:平面;(Ⅱ)求二面角的余弦值.20.(12分)已知橢圓的焦距為,點(diǎn)在橢圓上.過(guò)點(diǎn)的直線l交橢圓于A,B兩點(diǎn).(1)求該橢圓的方程;(2)若點(diǎn)P為直線上的動(dòng)點(diǎn),記直線PA,PM,PB的斜率分別為,,.求證:,,成等差數(shù)列.21.(12分)某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):x12345678y56.53122.7517.815.9514.51312.5根據(jù)以上數(shù)據(jù)繪制了散點(diǎn)圖觀察散點(diǎn)圖,兩個(gè)變量間關(guān)系考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對(duì)兩個(gè)變量的關(guān)系進(jìn)行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,與x的相關(guān)系數(shù).(1)用反比例函數(shù)模型求y關(guān)于x的回歸方程;(2)用相關(guān)系數(shù)判斷上述兩個(gè)模型哪一個(gè)擬合效果更好(精確到0.001),并用其估計(jì)產(chǎn)量為10千件時(shí)每件產(chǎn)品非原料成本;(3)根據(jù)企業(yè)長(zhǎng)期研究表明,非原料成本y服從正態(tài)分布,用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為的估計(jì)值,若非原料成本y在之外,說(shuō)明該成本異常,并稱(chēng)落在之外的成本為異樣成本,此時(shí)需尋找出現(xiàn)異樣成本的原因.利用估計(jì)值判斷上述非原料成本數(shù)據(jù)是否需要尋找出現(xiàn)異樣成本的原因?參考數(shù)據(jù)(其中):0.340.1151.531845777.55593.0630.70513.9參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,,相關(guān)系數(shù).22.(10分)如圖,已知頂點(diǎn),,動(dòng)點(diǎn)分別在軸,軸上移動(dòng),延長(zhǎng)至點(diǎn),使得,且.(1)求動(dòng)點(diǎn)的軌跡;(2)過(guò)點(diǎn)分別作直線交曲線于兩點(diǎn),若直線的傾斜角互補(bǔ),證明:直線的斜率為定值;(3)過(guò)點(diǎn)分別作直線交曲線于兩點(diǎn),若,直線是否經(jīng)過(guò)定點(diǎn)?若是,求出該定點(diǎn),若不是,說(shuō)明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)數(shù)的符號(hào)求出函數(shù)的單調(diào)區(qū)間,再根據(jù)函數(shù)的單調(diào)性即可得出答案.【詳解】解:因?yàn)椋?,?dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增,故.故選:D.2、C【解析】由導(dǎo)數(shù)的定義可得,即可得答案【詳解】根據(jù)題意,,故.故選:C3、A【解析】建立空間直角坐標(biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后求出直線的方向向量和平面的法向量,借助向量的運(yùn)算求出線面角的正弦值【詳解】取AC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系設(shè)三棱柱的棱長(zhǎng)為2,則,∴設(shè)為平面的一個(gè)法向量,由故令,得設(shè)直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點(diǎn)睛】空間向量的引入為解決立體幾何問(wèn)題提供了較好的方法,解題時(shí)首先要建立適當(dāng)?shù)淖鴺?biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后借助向量的運(yùn)算,將空間圖形的位置關(guān)系或數(shù)量關(guān)系轉(zhuǎn)化為向量的運(yùn)算處理.在解決空間角的問(wèn)題時(shí),首先求出向量夾角的余弦值,然后再轉(zhuǎn)化為所求的空間角.解題時(shí)要注意向量的夾角和空間角之間的聯(lián)系和區(qū)別,避免出現(xiàn)錯(cuò)誤4、D【解析】因?yàn)閽佄锞€方程可化為,所以拋物線的焦點(diǎn)到準(zhǔn)線的距離是,故選D.考點(diǎn):1、拋物線的標(biāo)準(zhǔn)方程;2、拋物線的幾何性質(zhì).5、D【解析】利用基本不等式求出的最小值16,分離參數(shù)即可.【詳解】因?yàn)椋?,,所以,?dāng)且僅當(dāng),即,時(shí)取等號(hào)由題意,得,即對(duì)任意的實(shí)數(shù)x恒成立,又,所以,即故選:D6、D【解析】由題意,化簡(jiǎn)即可得出雙曲線的離心率【詳解】解:由題意,.故選:D7、A【解析】根據(jù)橢圓的定義進(jìn)行求解即可.【詳解】因?yàn)榈闹荛L(zhǎng)等于10,,所以,因此點(diǎn)的軌跡是以為焦點(diǎn)的橢圓,且不在直線上,因此有,所以頂點(diǎn)的軌跡方程可以是,故選:A8、D【解析】以,,的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標(biāo)系,利用向量法即可求出答案.【詳解】解:由題意知,CA,CB,CC1兩兩垂直,以,,的方向分別為x軸、y軸、z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,設(shè)平面的法向量為,則令,得.因?yàn)?,所以,故直線BC與平面所成角的正弦值為.故選:D.9、D【解析】根據(jù)題意,先假設(shè)甲去了北京正確,則可分析其他人的陳述是否符合題意,再假設(shè)乙去西安正確,分析其他人的陳述是否符合題意,即可得答案.【詳解】由題意得,甲、乙、丙三人的陳述都只對(duì)了一半,假設(shè)甲去了北京正確,對(duì)于甲的陳述:則乙去西安錯(cuò)誤,則乙去了云南;對(duì)于乙的陳述:甲去了西安錯(cuò)誤,則丙去了北京正確;對(duì)于丙的陳述:甲去了云南錯(cuò)誤,乙去了北京也錯(cuò)誤,故假設(shè)錯(cuò)誤.假設(shè)乙去了西安正確,對(duì)于甲的陳述:則甲去了北京錯(cuò)誤,則甲去了云南;對(duì)于乙的陳述:甲去了西安錯(cuò)誤,則丙去了北京正確;對(duì)于丙的陳述:甲去了云南正確,乙去了北京錯(cuò)誤,此種假設(shè)滿足題意,故甲去了云南.故選:D10、A【解析】對(duì)中心組學(xué)習(xí)所在的階段分兩種情況討論得解.【詳解】解:如果中心組學(xué)習(xí)在第一階段,主題班會(huì)、主題團(tuán)日在第二、三階段,則其它活動(dòng)有2種方法;主題班會(huì)、主題團(tuán)日在第三、四階段,則其它活動(dòng)有1種方法;主題班會(huì)、主題團(tuán)日在第四、五階段,則其它活動(dòng)有1種方法,則此時(shí)共有種方法;如果中心組學(xué)習(xí)在第二階段,則第一階段只有1種方法,后面的三個(gè)階段有種方法.綜合得不同的安排方案共有10種.故選:A11、C【解析】利用不等式的性質(zhì)可判斷ABD,利用賦值法即可判斷C,如.【詳解】解:因?yàn)?,所以,所以,,,故ABD正確;對(duì)于C,若,則,故C錯(cuò)誤.故選:C.12、C【解析】先聯(lián)立方程得,再求得直線的點(diǎn)關(guān)于直線對(duì)稱(chēng)點(diǎn)的坐標(biāo)為,進(jìn)而根據(jù)題意得所求直線過(guò)點(diǎn),,進(jìn)而得直線方程.【詳解】解:聯(lián)立方程得,即直線與直線的交點(diǎn)為設(shè)直線的點(diǎn)關(guān)于直線對(duì)稱(chēng)點(diǎn)的坐標(biāo)為,所以,解得所以直線關(guān)于直線對(duì)稱(chēng)的直線過(guò)點(diǎn),所以所求直線方程的斜率為,所以所求直線的方程為,即故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先求得點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn),然后數(shù)形結(jié)合結(jié)合直線方程求解點(diǎn)P的坐標(biāo)即可.【詳解】點(diǎn)A(1,3)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為A′(1,-3),如圖所示,連接A′B并延長(zhǎng)交x軸于點(diǎn)P,即為所求直線A′B的方程是y+3=(x-1),即.令y=0,得x=13則點(diǎn)P的坐標(biāo)是.【點(diǎn)睛】本題主要考查直線方程的應(yīng)用,最值問(wèn)題的求解,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.14、4【解析】可設(shè)為第一象限的點(diǎn),,,求出,,化簡(jiǎn)即得解.【詳解】解:可設(shè)為第一象限的點(diǎn),,,由橢圓定義可得,由雙曲線的定義可得,可得,,由,可得,即為,化為,則故答案為:415、【解析】已知圓的圓心,點(diǎn)在以為直徑的圓上,兩圓相減就是直線的方程.【詳解】,圓心,點(diǎn)在以為直徑的圓上,,所以圓心是,以為直徑的圓的圓的方程是,直線是兩圓相交的公共弦所在直線,所以兩圓相減就是直線的方程,,所以直線的一般式方程為.故答案為:【點(diǎn)睛】結(jié)論點(diǎn)睛:過(guò)圓外一點(diǎn)引圓的切線,那么以圓心和圓外一點(diǎn)連線段為直徑的圓與已知圓相減,就是切點(diǎn)所在直線方程,或是兩圓相交,兩圓相減,就是公共弦所在直線方程.16、0【解析】作出約束條件對(duì)應(yīng)的可行域,當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)時(shí),取得最小值,求解即可.【詳解】作出約束條件對(duì)應(yīng)的可行域,如下圖陰影部分,聯(lián)立,可得交點(diǎn)為,目標(biāo)函數(shù)可化為,當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)時(shí),取得最小值,即.故答案為:0.【點(diǎn)睛】本題考查線性規(guī)劃,考查數(shù)形結(jié)合的數(shù)學(xué)思想的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)Sn=n2(2)11【解析】(1)由等差數(shù)列前n項(xiàng)和公式與下標(biāo)和性質(zhì)先求,然后結(jié)合可解;(2)由(1)中結(jié)論和已知列方程可解.【小問(wèn)1詳解】由,解得,又∵,∴,,∴【小問(wèn)2詳解】∵S3,S17–S16,Sk成等比數(shù)列,∴S3Sk=(S17–S16)2=,即9k2=332,解得:k=1118、(1)證明見(jiàn)解析(2)存在,的長(zhǎng)為或,理由見(jiàn)解析.【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得平面.(2)設(shè),求出,根據(jù)與平面所成角的正弦值列方程,由此求得,進(jìn)而求得的長(zhǎng).小問(wèn)1詳解】依題意,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,,以為空間坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,設(shè)平面法向量為,則,故可設(shè),由于,所以平面.【小問(wèn)2詳解】存在,理由如下:設(shè),,,,依題意與平面所成角的正弦值為,即,,解得或.,即的長(zhǎng)為或,使與平面所成角的正弦值為.19、(1)見(jiàn)解析;(2).【解析】分析:依題意可知兩兩垂直,以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系,(1)利用直線的方向向量和平面的法向量垂直,即可證得線面平面;(2)求出兩個(gè)平面的法向量,利用兩個(gè)向量的夾角公式,即可求解二面角的余弦值.詳解:依條件可知、、兩兩垂直,如圖,以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系.根據(jù)條件容易求出如下各點(diǎn)坐標(biāo):,,,,,,,.(Ⅰ)證明:∵,,是平面的一個(gè)法向量,且,所以.又∵平面,∴平面;(Ⅱ)設(shè)是平面的法向量,因?yàn)?,,由,?解得平面的一個(gè)法向量,由已知,平面的一個(gè)法向量為,,∴二面角的余弦值是.點(diǎn)睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過(guò)嚴(yán)密推理,明確角的構(gòu)成.同時(shí)對(duì)于立體幾何中角的計(jì)算問(wèn)題,往往可以利用空間向量法,通過(guò)求解平面的法向量,利用向量的夾角公式求解.20、(1);(2)證明見(jiàn)解析.【解析】(1)根據(jù)焦點(diǎn)坐標(biāo)及橢圓上的點(diǎn),利用橢圓的定義求出a,再由關(guān)系求b,即可得解;(2)分直線斜率存在與不存在兩種情況討論,利用斜率公式計(jì)算出,根據(jù)等差中項(xiàng)計(jì)算,即可證明成等差數(shù)列.【小問(wèn)1詳解】∵橢圓的焦距,橢圓的兩焦點(diǎn)坐標(biāo)分別為,又點(diǎn)在橢圓上,,即.該橢圓方程為.【小問(wèn)2詳解】設(shè).當(dāng)直線l的斜率為0時(shí),其方程為,代入,可得.不妨取,則,成等差數(shù)列.當(dāng)直線l的斜率不為0時(shí),設(shè)其方程為,由,消去x得.即,成等差數(shù)列,綜上可得,,成等差數(shù)列.21、(1)(2)反比例函數(shù)模型擬合效果更好,產(chǎn)量為10千件時(shí)每件產(chǎn)品的非原料成本約為11元,(3)見(jiàn)解析【解析】(1)令,則可轉(zhuǎn)化為,求出樣本中心,回歸方程的斜率,轉(zhuǎn)化求回歸方程即可,(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論