版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
一、解答題1.在平面直角坐標(biāo)系xOy中,對于給定的兩點P,Q,若存在點M,使得△MPQ的面積等于1,即S△MPQ=1,則稱點M為線段PQ的“單位面積點”,解答下列問題:如圖,在平面直角坐標(biāo)系xOy中,點P的坐標(biāo)為(1,0).(1)在點A(1,2),B(﹣1,1),C(﹣1,﹣2),D(2,﹣4)中,線段OP的“單位面積點”是;(2)已知點E(0,3),F(xiàn)(0,4),將線段OP沿y軸向上平移t(t>0)個單位長度,使得線段EF上存在線段OP的“單位面積點”,直接寫出t的取值范圍.(3)已知點Q(1,﹣2),H(0,﹣1),點M,N是線段PQ的兩個“單位面積點”,點M在HQ的延長線上,若S△HMN≥S△PQN,求出點N縱坐標(biāo)的取值范圍.2.已知,點為平面內(nèi)一點,于.(1)如圖1,求證:;(2)如圖2,過點作的延長線于點,求證:;(3)如圖3,在(2)問的條件下,點、在上,連接、、,且平分,平分,若,,求的度數(shù).3.閱讀下面材料:小亮同學(xué)遇到這樣一個問題:已知:如圖甲,ABCD,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D.(1)小亮寫出了該問題的證明,請你幫他把證明過程補充完整.證明:過點E作EFAB,則有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)請你參考小亮思考問題的方法,解決問題:如圖乙,已知:直線ab,點A,B在直線a上,點C,D在直線b上,連接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直線交于點E.①如圖1,當(dāng)點B在點A的左側(cè)時,若∠ABC=60°,∠ADC=70°,求∠BED的度數(shù);②如圖2,當(dāng)點B在點A的右側(cè)時,設(shè)∠ABC=α,∠ADC=β,請你求出∠BED的度數(shù)(用含有α,β的式子表示).4.綜合與探究(問題情境)王老師組織同學(xué)們開展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(1)如圖1,,點、分別為直線、上的一點,點為平行線間一點,請直接寫出、和之間的數(shù)量關(guān)系;(問題遷移)(2)如圖2,射線與射線交于點,直線,直線分別交、于點、,直線分別交、于點、,點在射線上運動,①當(dāng)點在、(不與、重合)兩點之間運動時,設(shè),.則,,之間有何數(shù)量關(guān)系?請說明理由.②若點不在線段上運動時(點與點、、三點都不重合),請你畫出滿足條件的所有圖形并直接寫出,,之間的數(shù)量關(guān)系.5.已知,如圖1,射線PE分別與直線AB,CD相交于E、F兩點,∠PFD的平分線與直線AB相交于點M,射線PM交CD于點N,設(shè)∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0(1)α=,β=;直線AB與CD的位置關(guān)系是;(2)如圖2,若點G、H分別在射線MA和線段MF上,且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數(shù)量關(guān)系,并證明你的結(jié)論;(3)若將圖中的射線PM繞著端點P逆時針方向旋轉(zhuǎn)(如圖3),分別與AB、CD相交于點M1和點N1時,作∠PM1B的角平分線M1Q與射線FM相交于點Q,問在旋轉(zhuǎn)的過程中的值是否改變?若不變,請求出其值;若變化,請說明理由.6.已知:ABCD.點E在CD上,點F,H在AB上,點G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,F(xiàn)M平分∠AFG,EM平分∠GEC,試問∠M與α之間有怎樣的數(shù)量關(guān)系(用含α的式子表示∠M)?請寫出你的猜想,并加以證明.7.閱讀理解:計算×﹣×?xí)r,若把與分別各看著一個整體,再利用分配律進行運算,可以大大簡化難度.過程如下:解:設(shè)為A,為B,則原式=B(1+A)﹣A(1+B)=B+AB﹣A﹣AB=B﹣A=.請用上面方法計算:①×-×②-.8.先閱讀下面的材料,再解答后面的各題:現(xiàn)代社會會保密要求越來越高,密碼正在成為人們生活的一部分,有一種密碼的明文(真實文)按計算機鍵盤字母排列分解,其中這26個字母依次對應(yīng)這26個自然數(shù)(見下表).QWERTYUIOPASD12345678910111213FGHJKLZXCVBNM14151617181920212223242526給出一個變換公式:將明文轉(zhuǎn)成密文,如,即變?yōu)椋?,即A變?yōu)镾.將密文轉(zhuǎn)成成明文,如,即變?yōu)椋?,即D變?yōu)镕.(1)按上述方法將明文譯為密文.(2)若按上方法將明文譯成的密文為,請找出它的明文.9.閱讀下面的文字,解答問題大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用﹣1來表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.又例如:<<,即2<<3,∴的整數(shù)部分為2,小數(shù)部分為(﹣2)請解答:(1)整數(shù)部分是,小數(shù)部分是.(2)如果的小數(shù)部分為a,的整數(shù)部分為b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整數(shù),且0<y<1,求x﹣y的相反數(shù).10.對于實數(shù)a,我們規(guī)定:用符號表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.(1)仿照以上方法計算:=______;=_____.(2)若,寫出滿足題意的x的整數(shù)值______.如果我們對a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對10連續(xù)求根整數(shù)2次=1,這時候結(jié)果為1.(3)對100連續(xù)求根整數(shù),____次之后結(jié)果為1.(4)只需進行3次連續(xù)求根整數(shù)運算后結(jié)果為1的所有正整數(shù)中,最大的是____.11.觀察下來等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式兩邊的數(shù)字分別是對稱的,且每個等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱這類等式為“數(shù)字對稱等式”.(1)根據(jù)以上各等式反映的規(guī)律,使下面等式成為“數(shù)字對稱等式”:52×_____=______×25;(2)設(shè)這類等式左邊的兩位數(shù)中,個位數(shù)字為a,十位數(shù)字為b,且2≤a+b≤9,則用含a,b的式子表示這類“數(shù)字對稱等式”的規(guī)律是_______.12.閱讀下列解題過程:為了求的值,可設(shè),則,所以得,所以;仿照以上方法計算:(1).(2)計算:(3)計算:13.如圖,在長方形中,為平面直角坐標(biāo)系的原點,點的坐標(biāo)為,點的坐標(biāo)為且、滿足,點在第一象限內(nèi),點從原點出發(fā),以每秒2個單位長度的速度沿著的線路移動.(1)點的坐標(biāo)為___________;當(dāng)點移動5秒時,點的坐標(biāo)為___________;(2)在移動過程中,當(dāng)點到軸的距離為4個單位長度時,求點移動的時間;(3)在的線路移動過程中,是否存在點使的面積是20,若存在直接寫出點移動的時間;若不存在,請說明理由.14.已知,如圖:射線分別與直線、相交于、兩點,的角平分線與直線相交于點,射線交于點,設(shè),且.(1)________,________;直線與的位置關(guān)系是______;(2)如圖,若點是射線上任意一點,且,試找出與之間存在一個什么確定的數(shù)量關(guān)系?并證明你的結(jié)論.(3)若將圖中的射線繞著端點逆時針方向旋轉(zhuǎn)(如圖)分別與、相交于點和點時,作的角平分線與射線相交于點,問在旋轉(zhuǎn)的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.15.如圖,在下面直角坐標(biāo)系中,已知,,三點,其中,,滿足關(guān)系式.(1)求,,的值;(2)如果在第二象限內(nèi)有一點,請用含的式子表示四邊形的面積;(3)在(2)的條件下,是否存在點,使四邊形的面積與三角形的面積相等?若存在,求出點的坐標(biāo),若不存在,請說明理由.16.如果x是一個有理數(shù),我們定義x表示不小于x的最小整數(shù).如3.24,2.62,55,66.由定義可知,任意一個有理數(shù)都能寫成xxb的形式(0≤b<1).(1)直接寫出x與x,x1的大小關(guān)系;提示1:用“不完全歸納法”推導(dǎo)x與x,x1的大小關(guān)系;提示2:用“代數(shù)推理”的方法推導(dǎo)x與x,x1的大小關(guān)系.(2)根據(jù)(1)中的結(jié)論解決下列問題:①直接寫出滿足3m74的m取值范圍;②直接寫出方程3.5n22n1的解..17.如圖1,在直角坐標(biāo)系中直線與、軸的交點分別為,,且滿足.(1)求、的值;(2)若點的坐標(biāo)為且,求的值;(3)如圖2,點坐標(biāo)是,若以2個單位/秒的速度向下平移,同時點以1個單位/秒的速度向左平移,平移時間是秒,若點落在內(nèi)部(不包含三角形的邊),求的取值范圍.18.如圖1,已知,點A(1,a),AH⊥x軸,垂足為H,將線段AO平移至線段BC,點B(b,0),其中點A與點B對應(yīng),點O與點C對應(yīng),a、b滿足.(1)填空:①直接寫出A、B、C三點的坐標(biāo)A(________)、B(________)、C(________);②直接寫出三角形AOH的面積________.(2)如圖1,若點D(m,n)在線段OA上,證明:4m=n.(3)如圖2,連OC,動點P從點B開始在x軸上以每秒2個單位的速度向左運動,同時點Q從點O開始在y軸上以每秒1個單位的速度向下運動.若經(jīng)過t秒,三角形AOP與三角形COQ的面積相等,試求t的值及點P的坐標(biāo).19.判斷下面方程組的解法是否正確,如果全部正確,判斷即可;如果有錯誤,請寫出正確的解題過程.解:①×2-②×3,得,解得,把代入方程①,得,解得.∴原方程組的解為20.閱讀下列材料,解答下面的問題:我們知道方程有無數(shù)個解,但在實際生活中我們往往只需求出其正整數(shù)解.例:由,得:,(x、y為正整數(shù))∴,則有.又為正整數(shù),則為正整數(shù).由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入∴2x+3y=12的正整數(shù)解為問題:(1)請你寫出方程的一組正整數(shù)解:.(2)若為自然數(shù),則滿足條件的x值為.(3)七年級某班為了獎勵學(xué)習(xí)進步的學(xué)生,購買了單價為3元的筆記本與單價為5元的鋼筆兩種獎品,共花費35元,問有幾種購買方案?21.閱讀下列文字,請仔細(xì)體會其中的數(shù)學(xué)思想.(1)解方程組,我們利用加減消元法,很快可以求得此方程組的解為;(2)如何解方程組呢?我們可以把m+5,n+3看成一個整體,設(shè)m+5=x,n+3=y(tǒng),很快可以求出原方程組的解為;(3)由此請你解決下列問題:若關(guān)于m,n的方程組與有相同的解,求a、b的值.22.在平面直角坐標(biāo)系中,點,點,點.(1)的面積為______;(2)已知點,,那么四邊形的面積為______.(3)奧地利數(shù)學(xué)家皮克發(fā)現(xiàn)了一類快速求解格點多邊形的方法,被稱為皮克定理:如果用m表示格點多邊形內(nèi)的格點數(shù),n表示格點多邊形邊上的格點數(shù),那么格點多邊形的面積S和m與n之間滿足一種數(shù)量關(guān)系.例如剛剛求解的幾個多邊形面積中,我們可以得到如表中信息:形內(nèi)格點數(shù)m邊界格點數(shù)n格點多邊形面積S611四邊形811五邊形208根據(jù)上述的例子,猜測皮克公式為______(用m,n表示),試計算圖②中六邊形的面積為______(本大題無需寫出解題過程,寫出正確答案即可).23.某治污公司決定購買10臺污水處理設(shè)備.現(xiàn)有甲、乙兩種型號的設(shè)備可供選擇,其中每臺的價格與月處理污水量如下表:甲型乙型價格(萬元/臺)xy處理污水量(噸/月)300260經(jīng)調(diào)查:購買一臺甲型設(shè)備比購買一臺乙型設(shè)備多2萬元,購買3臺甲型設(shè)備比購買4臺乙型設(shè)備少2萬元.(1)求x,y的值;(2)如果治污公司購買污水處理設(shè)備的資金不超過91萬元,求該治污公司有哪幾種購買方案;(3)在(2)的條件下,如果月處理污水量不低于2750噸,為了節(jié)約資金,請為該公司設(shè)計一種最省錢的購買方案.24.在平面直角坐標(biāo)系xOy中.點A,B,P不在同一條直線上.對于點P和線段AB給出如下定義:過點P向線段AB所在直線作垂線,若垂足Q落在線段AB上,則稱點P為線段AB的內(nèi)垂點.若垂足Q滿足|AQ-BQ|最小,則稱點P為線段AB的最佳內(nèi)垂點.已知點A(﹣2,1),B(1,1),C(﹣4,3).(1)在點P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點為;(2)點M是線段AB的最佳內(nèi)垂點且到線段AB的距離是2,則點M的坐標(biāo)為;(3)點N在y軸上且為線段AC的內(nèi)垂點,則點N的縱坐標(biāo)n的取值范圍是;(4)已知點D(m,0),E(m+4,0),F(xiàn)(2m,3).若線段CF上存在線段DE的最佳內(nèi)垂點,求m的取值范圍.25.如圖①,在平直角坐標(biāo)系中,△ABO的三個頂點為A(a,b),B(﹣a,3b),O(0,0),且滿足|b﹣2|=0,線段AB與y軸交于點C.(1)求出A,B兩點的坐標(biāo);(2)求出△ABO的面積;(3)如圖②,將線段AB平移至B點的對應(yīng)點落在x軸的正半軸上時,此時A點的對應(yīng)點為,記△的面積為S,若24<S<32,求點的橫坐標(biāo)的取值范圍.26.已知關(guān)于x、y的二元一次方程(1)若方程組的解x、y滿足,求a的取值范圍;(2)求代數(shù)式的值.27.某超市投入31500元購進A、B兩種飲料共800箱,飲料的成本與銷售價如下表:(單位:元/箱)類別成本價銷售價A4264B3652(1)該超市購進A、B兩種飲料各多少箱?(2)全部售完800箱飲料共盈利多少元?(3)若超市計劃盈利16200元,且A類飲料售價不變,則B類飲料銷售價至少應(yīng)定為每箱多少元?28.如圖,A點的坐標(biāo)為(0,3),B點的坐標(biāo)為(﹣3,0),D為x軸上的一個動點且不與B,O重合,將線段AD繞點A逆時針旋轉(zhuǎn)90°得線段AE,使得AE⊥AD,且AE=AD,連接BE交y軸于點M.(1)如圖,當(dāng)點D在線段OB的延長線上時,①若D點的坐標(biāo)為(﹣5,0),求點E的坐標(biāo).②求證:M為BE的中點.③探究:若在點D運動的過程中,的值是否是定值?如果是,請求出這個定值;如果不是,請說明理由.(2)請直接寫出三條線段AO,DO,AM之間的數(shù)量關(guān)系(不需要說明理由).29.我區(qū)防汛指揮部在一河道的危險地帶兩岸各安置一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈光射線自順時針旋轉(zhuǎn)至便立即逆時針旋轉(zhuǎn)至,如此循環(huán)燈光射線自順時針旋轉(zhuǎn)至便立即逆時針旋轉(zhuǎn)至,如此循環(huán).兩燈交叉照射且不間斷巡視.若燈轉(zhuǎn)動的速度是度/秒,燈轉(zhuǎn)動的速度是度/秒,且,滿足.若這一帶江水兩岸河堤相互平行,即,且.根據(jù)相關(guān)信息,解答下列問題.(1)__________,__________.(2)若燈的光射線先轉(zhuǎn)動24秒,燈的光射線才開始轉(zhuǎn)動,在燈的光射線到達(dá)之前,燈轉(zhuǎn)動幾秒,兩燈的光射線互相平行?(3)如圖2,若兩燈同時開始轉(zhuǎn)動照射,在燈的光射線到達(dá)之前,若兩燈射出的光射線交于點,過點作交于點,則在轉(zhuǎn)動的過程中,與間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請求出這兩角間的數(shù)量關(guān)系;若改變,請求出各角的取值范圍.30.閱讀以下內(nèi)容:已知有理數(shù)m,n滿足m+n=3,且求k的值.三位同學(xué)分別提出了以下三種不同的解題思路:甲同學(xué):先解關(guān)于m,n的方程組,再求k的值;乙同學(xué):將原方程組中的兩個方程相加,再求k的值;丙同學(xué):先解方程組,再求k的值.(1)試選擇其中一名同學(xué)的思路,解答此題;(2)在解關(guān)于x,y的方程組時,可以用①×7﹣②×3消去未知數(shù)x,也可以用①×2+②×5消去未知數(shù)y.求a和b的值.【參考答案】***試卷處理標(biāo)記,請不要刪除一、解答題1.(1),;(2)或;(3)見解析【分析】(1)分別根據(jù)三角形的面積計算△OPA,△DPB,△DPC,△OPD的面積即可;(2)分線段OP在線段EF下方和線段OP在線段EF上方分別求解;(3)畫出圖形,根據(jù)S△PQN=1,得到S△HMN≥,分當(dāng)xN=0時,當(dāng)xN=2時,分別結(jié)合S△HMN≥,得到不等式,求出N點縱坐標(biāo)的范圍.【詳解】解:(1)S△OPA=,則點A是線段OP的“單位面積點”,S△OPB=,則點B不是線段OP的“單位面積點”,S△OPC=,則點C是線段OP的“單位面積點”,S△OPD=,則點D不是線段OP的“單位面積點”,(2)設(shè)點G是線段OP的“單位面積點”,則S△OPG=1,∵點E的坐標(biāo)為(0,3),點F的坐標(biāo)為(0,4),且點G在線段EF上,∴點G的橫坐標(biāo)為0,∵S△OPG=1,線段OP為y軸向上平移t(t>0)個單位長度,當(dāng)為單位面積點時,當(dāng)為單位面積點時,綜上所述:1≤t≤2或5≤t≤6;(3)∵M,N是線段PQ的兩個單位面積點,∴S△PQM=1,S△PQN=1,∵P(1,0),Q(1,-2),∴PQ=2,∴M,N的橫坐標(biāo)為0或2,∵點M在HQ的延長線上,∴點M的橫坐標(biāo)為xM=2,∵S△HMN≥S△PQN,∴S△HMN≥,當(dāng)xN=0時,S△HMN=,則,∴或;當(dāng)xN=2時,S△HMN=,則,∴或.【點睛】本題主要考查三角形的面積公式,并且能夠理解單位面積點的定義,解題關(guān)鍵是找到單位面積點的軌跡進行求解.2.(1)見解析;(2)見解析;(3).【分析】(1)先根據(jù)平行線的性質(zhì)得到,然后結(jié)合即可證明;(2)過作,先說明,然后再說明得到,最后運用等量代換解答即可;(3)設(shè)∠DBE=a,則∠BFC=3a,根據(jù)角平分線的定義可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根據(jù)三角形內(nèi)角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度數(shù)表達(dá)式,再根據(jù)平行的性質(zhì)可得∠AFC+∠NCF=180°,代入即可算出a的度數(shù),進而完成解答.【詳解】(1)證明:∵,∴,∵于,∴,∴,∴;(2)證明:過作,∵,∴,又∵,∴,∴,∵,∴,∴,∴;(3)設(shè)∠DBE=a,則∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【點睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì)及角的計算,熟練應(yīng)用平行線的性質(zhì)、角平分線的性質(zhì)是解答本題的關(guān)鍵.3.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖1,過點E作EF∥AB,當(dāng)點B在點A的左側(cè)時,根據(jù)∠ABC=60°,∠ADC=70°,參考小亮思考問題的方法即可求∠BED的度數(shù);②如圖2,過點E作EF∥AB,當(dāng)點B在點A的右側(cè)時,∠ABC=α,∠ADC=β,參考小亮思考問題的方法即可求出∠BED的度數(shù).【詳解】解:(1)過點E作EF∥AB,則有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案為:∠B;EF;CD;∠D;(2)①如圖1,過點E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度數(shù)為65°;②如圖2,過點E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度數(shù)為180°﹣.【點睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì).4.(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質(zhì),即可得到答案;(2)①過作交于,由平行線的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對點P進行分類討論:當(dāng)點在延長線時;當(dāng)在之間時;與①同理,利用平行線的性質(zhì),即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過作交于,∵,∴,∴,,∴;②當(dāng)點在延長線時,如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當(dāng)在之間時,如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練掌握兩直線平行同旁內(nèi)角互補,兩直線平行內(nèi)錯角相等,從而得到角的關(guān)系.5.(1)20,20,;(2);(3)的值不變,【分析】(1)根據(jù),即可計算和的值,再根據(jù)內(nèi)錯角相等可證;(2)先根據(jù)內(nèi)錯角相等證,再根據(jù)同旁內(nèi)角互補和等量代換得出;(3)作的平分線交的延長線于,先根據(jù)同位角相等證,得,設(shè),,得出,即可得.【詳解】解:(1),,,,,,,;故答案為:20、20,;(2);理由:由(1)得,,,,,,,;(3)的值不變,;理由:如圖3中,作的平分線交的延長線于,,,,,,,,設(shè),,則有:,可得,,.【點睛】本題主要考查平行線的判定與性質(zhì),熟練掌握內(nèi)錯角相等證平行,平行線同旁內(nèi)角互補等知識是解題的關(guān)鍵.6.(1)見解析;(2),證明見解析.【分析】(1)由平行線的性質(zhì)得到,等量代換得出,即可根據(jù)“同位角相等,兩直線平行”得解;(2)過點作,過點作,根據(jù)平行線的性質(zhì)及角平分線的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過點作,過點作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點睛】此題考查了平行線的判定與性質(zhì),熟記平行線的判定與性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.7.(1);(2).【分析】①根據(jù)發(fā)現(xiàn)的規(guī)律得出結(jié)果即可;②根據(jù)發(fā)現(xiàn)的規(guī)律將所求式子變形,約分即可得到結(jié)果.【詳解】(1)設(shè)為A,為B,原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=;(2)設(shè)為A,為B,原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=.【點睛】考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.8.(1)N,E,T密文為M,Q,P;(2)密文D,W,N的明文為F,Y,C.【分析】(1)
由圖表找出N,E,T對應(yīng)的自然數(shù),再根據(jù)變換公式變成密文.(2)由圖表找出N=M,Q,P對應(yīng)的自然數(shù),再根據(jù)變換.公式變成明文.【詳解】解:(1)將明文NET轉(zhuǎn)換成密文:即N,E,T密文為M,Q,P;(2)將密文D,W,N轉(zhuǎn)換成明文:即密文D,W,N的明文為F,Y,C.【點睛】本題考查有理數(shù)的混合運算,此題較復(fù)雜,解答本題的關(guān)鍵是由圖表中找到對應(yīng)的數(shù)或字母,正確運用轉(zhuǎn)換公式進行轉(zhuǎn)換.9.(1)7;-7;(2)5;(3)13-.【分析】(1)估算出的范圍,即可得出答案;(2)分別確定出a、b的值,代入原式計算即可求出值;(3)根據(jù)題意確定出等式左邊的整數(shù)部分得出y的值,進而求出y的值,即可求出所求.【詳解】解:(1)∵7﹤﹤8,∴的整數(shù)部分是7,小數(shù)部分是-7.故答案為:7;-7.(2)∵3﹤﹤4,∴,∵2﹤﹤3,∴b=2∴|a-b|+=|-3-2|+=5-+=5(3)∵2﹤﹤3∴11<9+<12,∵9+=x+y,其中x是整數(shù),且0﹤y<1,∴x=11,y=-11+9+=-2,∴x-y=11-(-2)=13-【點睛】本題考查的是無理數(shù)的小數(shù)部分和整數(shù)部分及其運算.估算無理數(shù)的整數(shù)部分是解題關(guān)鍵.10.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定義可得結(jié)果;(2)根據(jù)定義可知x<4,可得滿足題意的x的整數(shù)值;(3)根據(jù)定義對120進行連續(xù)求根整數(shù),可得3次之后結(jié)果為1;(4)最大的正整數(shù)是255,根據(jù)操作過程分別求出255和256進行幾次操作,即可得出答案.【詳解】解:(1)∵22=4,62=36,52=25,∴5<<6,∴[]=[2]=2,[]=5,故答案為2,5;(2)∵12=1,22=4,且[]=1,∴x=1,2,3,故答案為1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案為3;(4)最大的正整數(shù)是255,理由是:∵[]=15,[]=3,[]=1,∴對255只需進行3次操作后變?yōu)?,∵[]=16,[]=4,[]=2,[]=1,∴對256只需進行4次操作后變?yōu)?,∴只需進行3次操作后變?yōu)?的所有正整數(shù)中,最大的是255,故答案為255.【點睛】本題考查了估算無理數(shù)的大小的應(yīng)用,主要考查學(xué)生的閱讀能力和猜想能力,同時也考查了一個數(shù)的平方數(shù)的計算能力.11.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【分析】(1)觀察等式,發(fā)現(xiàn)規(guī)律,等式的左邊:兩位數(shù)所乘的數(shù)是這個兩位數(shù)的個位數(shù)字變?yōu)榘傥粩?shù)字,十位數(shù)字變?yōu)閭€位數(shù)字,兩個數(shù)字的和放在十位;等式的右邊:三位數(shù)與左邊的三位數(shù)字百位與個位數(shù)字交換,兩位數(shù)與左邊的兩位數(shù)十位與個位數(shù)字交換然后相乘,根據(jù)此規(guī)律進行填空即可;(2)按照(1)中對稱等式的方法寫出,然后利用多項式的乘法進行寫出即可.【詳解】解:(1)∵5+2=7,∴左邊的三位數(shù)是275,右邊的三位數(shù)是572,∴52×275=572×25,(2)左邊的兩位數(shù)是10b+a,三位數(shù)是100a+10(a+b)+b;右邊的兩位數(shù)是10a+b,三位數(shù)是100b+10(a+b)+a;“數(shù)字對稱等式”為:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案為275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【點睛】本題是對數(shù)字變化規(guī)律的考查,根據(jù)已知信息,理清利用左邊的兩位數(shù)的十位數(shù)字與個位數(shù)字變化得到其它的三個數(shù)字是解題的關(guān)鍵.12.(1);(2);(3).【分析】仿照閱讀材料中的方法求出所求即可.【詳解】解:(1)根據(jù)得:(2)設(shè),則,∴,∴即:(3)設(shè),則,∴,∴即:同理可求?∵【點睛】此題考查了規(guī)律型:數(shù)字的變化類,弄清題中的規(guī)律是解本題的關(guān)鍵.13.(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t=2.5s或【分析】(1)由非負(fù)數(shù)的性質(zhì)可得a、b的值,據(jù)此可得點B的坐標(biāo);由點P運動速度和時間可得其運動5秒的路程,得到OP=10,從而得出其坐標(biāo);(2)先根據(jù)點P運動11秒判斷出點P的位置,再根據(jù)三角形的面積公式求解可得;(3)分為點P在OC、BC上分類計算即可.【詳解】解:(1)∵a,b滿足,∴a=8,b=12,∴點B(8,12);當(dāng)點P移動5秒時,其運動路程為5×2=10,∴OP=10,則點P坐標(biāo)為(0,10),故答案為:(8,12)、(0,10);(2)由題意可得,第一種情況,當(dāng)點P在OC上時,點P移動的時間是:4÷2=2秒,第二種情況,當(dāng)點P在BA上時.點P移動的時間是:(12+8+8)÷2=14秒,所以在移動過程中,當(dāng)點P到x軸的距離為4個單位長度時,點P移動的時間是2秒或14秒.(3)如圖1所示:∵△OBP的面積=20,∴OP?BC=20,即×8×OP=20.解得:OP=5.∴此時t=2.5s如圖2所示;∵△OBP的面積=20,∴PB?OC=20,即×12×PB=20.解得:BP=.∴CP=.∴此時t=,綜上所述,滿足條件的時間t=2.5s或【點睛】本題考查矩形的性質(zhì),三角形的面積,坐標(biāo)與圖形的性質(zhì),解題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答問題.14.(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(jù)(α-35)2+|β-α|=0,即可計算α和β的值,再根據(jù)內(nèi)錯角相等可證AB∥CD;(2)先根據(jù)內(nèi)錯角相等證GH∥PN,再根據(jù)同旁內(nèi)角互補和等量代換得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分線交M1Q的延長線于R,先根據(jù)同位角相等證ER∥FQ,得∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【詳解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不變,為2,理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,則有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【點睛】本題主要考查平行線的判定與性質(zhì),熟練掌握內(nèi)錯角相等證平行,平行線同旁內(nèi)角互補等知識是解題的關(guān)鍵.15.(1)a=2,b=3,c=4;(2)S四邊形ABOP=3-m;(3)存在,P(-3,).【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì),即可解答;(2)四邊形ABOP的面積=△APO的面積+△AOB的面積,即可解答;(3)存在,根據(jù)面積相等求出m的值,即可解答.【詳解】解:(1)由已知可得:a-2=0,b-3=0,c-4=0,解得:a=2,b=3,c=4;(2)∵a=2,b=3,c=4,∴A(0,2),B(3,0),C(3,4),∴OA=2,OB=3,∵S△ABO=×2×3=3,S△APO=×2×(-m)=-m,∴S四邊形ABOP=S△ABO+S△APO=3+(-m)=3-m(3)存在,∵S△ABC=×4×3=6,若S四邊形ABOP=S△ABC=3-m=6,則m=-3,∴存在點P(-3,)使S四邊形ABOP=S△ABC.【點睛】本題考查了坐標(biāo)與圖形性質(zhì),解決本題的關(guān)鍵是根據(jù)非負(fù)數(shù)的性質(zhì)求出a,b,c.16.(1);(2)①;②或.【分析】(1)提示1:先列出4個x的值,分別得出與的大小關(guān)系,再利用“不完全歸納法”即可得;提示2:先根據(jù)“”得出,再根據(jù)“”即可得;(2)①根據(jù)(1)的結(jié)論得出,據(jù)此解不等式組即可得;②先根據(jù)(1)的結(jié)論得出,再解不等式組求出n的取值范圍,從而可得的取值范圍,然后根據(jù)“為整數(shù)”可得出方程,由此解方程即可得.【詳解】(1)提示1:當(dāng)時,,則當(dāng)時,,則當(dāng)時,,則當(dāng)時,,則由“不完全歸納法”可得:;提示2:,且;(2)①由(1)的結(jié)論得:解得;②由(1)的結(jié)論得:解得為整數(shù)則或解得或.【點睛】本題考查了一元一次不等式組的應(yīng)用、解一元一次方程等知識點,理解新定義,正確求解不等式組是解題關(guān)鍵.17.(1),;(2)或;(3)【分析】(1)根據(jù)非負(fù)數(shù)和為0,則每一個非負(fù)數(shù)都是0,即可求出a,b的值;(2)設(shè)直線AB與直線x=1交于點N,可得N(1,5),根據(jù)S△ABM=S△AMN?S△BMN,即可表示出S△ABM,從而列出m的方程.(3)根據(jù)題意知,臨界狀態(tài)是點P落在OA和AB上,分別求出此時t的值,即可得出范圍.【詳解】(1)∵,,∴,解得:,(2)設(shè)直線與直線交于,設(shè)∵a=?4,b=4,∴A(?4,0),B(0,4),設(shè)直線AB的函數(shù)解析式為:y=kx+b,代入得,解得∴直線AB的函數(shù)解析式為:y=x+4,代入x=1得∵∴=×5×|5?m|?×1×|5?m|=2|5?m|,∵∴∴或解得:或,(3)當(dāng)點P在OA邊上時,則2t=2,∴t=1,當(dāng)點P在AB邊上時,如圖,過點P作PKx軸,AK⊥x軸交于K,則KP'=3?t,KA'=2t?2,∴3?t=2t?2,∴綜上所述:.【點睛】本題主要考查了平移的性質(zhì)、一般三角形面積的和差表示、以及非負(fù)數(shù)的性質(zhì)等知識點,第(2)問中用絕對值來表示動點構(gòu)成的線段長度是正確解題的關(guān)鍵.18.(1)①1,4;3,0;2,﹣4;②2;(2)見解析;(3)t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【分析】(1)①利用非負(fù)數(shù)的性質(zhì)求出a,b的值,可得結(jié)論.②利用三角形面積公式求解即可.(2)連接DH,根據(jù)△ODH的面積+△ADH的面積=△OAH的面積,構(gòu)建關(guān)系式,可得結(jié)論.(3)分兩種情形:①當(dāng)點P在線段OB上,②當(dāng)點P在BO的延長線上時,分別利用面積關(guān)系,構(gòu)建方程,可得結(jié)論.【詳解】(1)解:①∵,又∵≥0,(b﹣3)2≥0,∴a=4,b=3,∴A(1,4),B(3,0),∵B是由A平移得到的,∴A向右平移2個單位,向下平移4個單位得到B,∴點C是由點O向右平移2個單位,向下平移4個單位得到的,∴C(2,﹣4),故答案為:1,4;3,0;2,﹣4.②△AOH的面積=×1×4=2,故答案為:2.(2)證明:如圖,連接DH.∵△ODH的面積+△ADH的面積=△OAH的面積,∴×1×n+×4×(1﹣m)=2,∴4m=n.(3)解:①當(dāng)點P在線段OB上,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,∴×(3﹣2t)×4=×2t,解得t=1.2.此時P(0.6,0).②當(dāng)點P在BO的延長線上時,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,×(2t﹣3)×4=×2×t,解得t=2,此時P(﹣1,0),綜上所述,t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【點睛】本題考查坐標(biāo)與圖形變化-平移,非負(fù)數(shù)的性質(zhì),三角形的面積等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題.19.【分析】用加減消元法解二元一次方程組,在兩個方程作差時符號出錯了,正確為①②,得,再求解即可.【詳解】解:上述解法不正確.正確解題過程如下:①②,得,解得,把代入方程①,得,解得.原方程組的解為.【點睛】本題考查了二元一次方程組的解,解題的關(guān)鍵是熟練掌握加減消元法解二元一次方程組.20.(1)方程的正整數(shù)解是或.(只要寫出其中的一組即可);(2)滿足條件x的值有4個:x=3或x=4或x=5或x=8;(3)有兩種購買方案:即購買單價為3元的筆記本5本,單價為5元的鋼筆4支;或購買單價為3元的筆記本10本,單價為5元的鋼筆1支.【解析】(1)---------------------------.(2)C(3)解:設(shè)購買單價為3元的筆記本x個,購買單價5元的鋼筆y個,由題意得:3x+5y=35此方程的正整數(shù)解為有兩種購買方案:方案一:購買單價為3元的筆記本5個,購買單價為5元的鋼筆4支.方案二:購買單價為3元的筆記本10個,購買單價為5元的鋼筆1支(1)只要使等式成立即可(2)x-2必須是6的約數(shù)(3)設(shè)購買單價為3元的筆記本x個,購買單價5元的鋼筆y個,根據(jù)題意列二元一次方程,去正整數(shù)解求值21.(1);(2);(3)a=3,b=2.【分析】(1)利用加減消元法,可以求得;(2)利用換元法,設(shè)m+5=x,n+3=y,則方程組化為(1)中的方程組,可求得x,y的值進一步可求出原方程組的解;(3)把am和bn當(dāng)成一個整體利用已知條件可求出am和bn,再把bn代入2m-bn=-2中求出m的值,然后把m的值代入3m+n=5可求出n的值,繼而可求出a、b的值.【詳解】解:(1)兩個方程相加得,∴,把代入得,∴方程組的解為:;故答案是:;(2)設(shè)m+5=x,n+3=y(tǒng),則原方程組可化為,由(1)可得:,∴m+5=1,n+3=2,∴m=-4,n=-1,∴,故答案是:;(3)由方程組與有相同的解可得方程組,解得,把bn=4代入方程2m﹣bn=﹣2得2m=2,解得m=1,再把m=1代入3m+n=5得3+n=5,解得n=2,把m=1代入am=3得:a=3,把n=2代入bn=4得:b=2,所以a=3,b=2.【點睛】本題主要考查二元一次方程組的解法,重點是考查整體思想及換元法的應(yīng)用,解題的關(guān)鍵是理解好整體思想.22.(1)10.5;(2)12.5;(3)10.5,12.5,23;;30【分析】(1)畫出圖形,根據(jù)三角形的面積公式求解;(2)畫出圖形,利用割補法求解;(3)設(shè)S=am+bn+c,其中a,b,c為常數(shù),根據(jù)表中數(shù)據(jù)列方程組求出a,b,c,然后根據(jù)公式即可求出六邊形的面積.【詳解】(1)如圖1,的底為7,高為3,所以面積為,故答案為:10.5;(2)如圖2,,故答案為:12.5;(3)由(1)、(2)可填表格如下:形內(nèi)格點數(shù)m邊界格點數(shù)n格點多邊形面積S61110.5四邊形81112.5五邊形20823設(shè)S=am+bn+c,其中a,b為常數(shù),由題意得,解得,∴皮克公式為,∵六邊形中,m=27,n=8,∴六邊形的面積為=30.【點睛】本題考查了坐標(biāo)與圖形的性質(zhì),三角形的面積,三元一次方程組的應(yīng)用等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題.23.(1);(2)該公司有6種購買方案,方案1:購買10臺乙型設(shè)備;方案2:購買1臺甲型設(shè)備,9臺乙型設(shè)備;方案3:購買2臺甲型設(shè)備,8臺乙型設(shè)備;方案4:購買3臺甲型設(shè)備,7臺乙型設(shè)備;方案5:購買4臺甲型設(shè)備,6臺乙型設(shè)備;方案6:購買5臺甲型設(shè)備,5臺乙型設(shè)備;(3)最省錢的購買方案為:購買4臺甲型設(shè)備,6臺乙型設(shè)備.【分析】(1)由一臺A型設(shè)備的價格是x萬元,一臺乙型設(shè)備的價格是y萬元,根據(jù)題意得等量關(guān)系:購買一臺甲型設(shè)備-購買一臺乙型設(shè)備=2萬元,購買4臺乙型設(shè)備-購買3臺甲型設(shè)備=2萬元,根據(jù)等量關(guān)系,列出方程組,再解即可;(2)設(shè)購買甲型設(shè)備m臺,則購買乙型設(shè)備(10-m)臺,由題意得不等關(guān)系:購買甲型設(shè)備的花費+購買乙型設(shè)備的花費≤91萬元,根據(jù)不等關(guān)系列出不等式,再解即可;(3)由題意可得:甲型設(shè)備處理污水量+乙型設(shè)備處理污水量≥2750噸,根據(jù)不等關(guān)系,列出不等式,再解即可.【詳解】(1)依題意,得:,解得:.(2)設(shè)該治污公司購進m臺甲型設(shè)備,則購進(10﹣m)臺乙型設(shè)備,依題意,得:10m+8(10﹣m)≤91,解得:m≤5.又∵m為非零整數(shù),∴m=0,1,2,3,4,5,∴該公司有6種購買方案,方案1:購買10臺乙型設(shè)備;方案2:購買1臺甲型設(shè)備,9臺乙型設(shè)備;方案3:購買2臺甲型設(shè)備,8臺乙型設(shè)備;方案4:購買3臺甲型設(shè)備,7臺乙型設(shè)備;方案5:購買4臺甲型設(shè)備,6臺乙型設(shè)備;方案6:購買5臺甲型設(shè)備,5臺乙型設(shè)備.(3)依題意,得:300m+260(10﹣m)≥2750,解得:m≥3,∴m=4,5.當(dāng)m=4時,總費用為10×4+8×6=88(萬元);當(dāng)m=5時,總費用為10×5+8×5=90(萬元).∵88<90,∴最省錢的購買方案為:購買4臺甲型設(shè)備,6臺乙型設(shè)備.【點睛】此題主要考查了二元一次方程組的應(yīng)用和一元一次不等式的應(yīng)用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系和不等關(guān)系,列出方程(組)和不等式.24.(1)P3,P4;(2)(-0.5,3)或(-0.5,-1);(3);(4)或【分析】(1)根據(jù)題意分析,即可得到答案;(2)結(jié)合題意,首先求得線段中點C坐標(biāo),再根據(jù)題意分析,即可得到答案;(3)過點A作軸,過點C作軸,交于點D,過點A作,交y軸于點,過點C作,交y軸于點,根據(jù)三角形和直角坐標(biāo)系的性質(zhì),得;再根據(jù)直角坐標(biāo)系和等腰直角三角形性質(zhì),得,,從而得到答案;(4)根據(jù)題意,得線段中點坐標(biāo);再結(jié)合題意列不等式并求解,即可得到答案.【詳解】(1)根據(jù)題意,點P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點為P3(﹣1,﹣2),P4(﹣,4)故答案為:P3,P4;(2)∵A(﹣2,1),B(1,1)∴線段中點C坐標(biāo)為:,即∵點M是線段AB的最佳內(nèi)垂點且到線段AB的距離是2∴當(dāng)或,即當(dāng)或時,|AQ-BQ|=0,為最小值故答案為:(-0.5,3)或(-0.5,-1);(3)如圖,過點A作軸,過點C作軸,交于點D,過點A作,交y軸于點,過點C作,交y軸于點,∵點A(﹣2,1),C(﹣4,3)∴,,∴∴,,即,∴故答案為:;(4)∵點D(m,0),E(m+4,0)∴線段中點坐標(biāo)為根據(jù)題意,得:當(dāng)時,;當(dāng)時,;∴或.【點睛】本題考查了直角坐標(biāo)系、一元一次不等式知識;解題的關(guān)鍵是熟練掌握直角坐標(biāo)系、一元一次不等式、坐標(biāo)的性質(zhì),從而完成求解.25.(1)A(-3,2),B(3,6);(2)△ABO的面積為12;(3)點的橫坐標(biāo)的取值范圍是.【分析】(1)根據(jù)算術(shù)平方根和絕對值的非負(fù)性可得a=-3,b=2,進而可求得A,B兩點的坐標(biāo);(2)過A作AE⊥x軸,垂足為E,過B作BF⊥x軸,垂足為F,根據(jù)即可求得答案;(3)先根據(jù)可求得點C的坐標(biāo),設(shè)(m,0),根據(jù)平移的性質(zhì)可得(m-6,-4),過點、、分別作坐標(biāo)軸的平行線,交點記為點M、N、H,根據(jù)可得,再根據(jù)24<S<32可求得,進而可求得點的橫坐標(biāo)的取值范圍.【詳解】解:(1)∵,,,∴a+3=0且b-2=0,∴a=-3,b=2,又∵A(a,b),B(-a,3b),∴A,B兩點的坐標(biāo)為A(-3,2),B(3,6);(2)如圖,過A作AE⊥x軸,垂足為E,過B作BF⊥x軸,垂足為F,∵A(-3,2),B(3,6),∴AE=2,BF=6,EF=6,EO=3,OF=3,∴∴△ABO的面積為12;(3)由(2)知:,而∴,解得:CO=4,∴C(0,4),∵在x的正半軸上,∴設(shè)(m,0),且m>0,此時由平移的性質(zhì)易知(m-6,-4),∴如圖所示,過點、、分別作坐標(biāo)軸的平行線,交點記為點M、N、H,則,即,又∵,∴,解得:,∴,∴點的橫坐標(biāo)的取值范圍是.【點睛】本題考查了算術(shù)平方根和絕對值的非負(fù)性,平移的性質(zhì),用割補法求三角形的面積,以及解一元一次不等式組,熟練掌握用割補法求三角形的面積是解決本題的關(guān)鍵.26.(1);(2)-17【分析】(1)解方程組求出x、y的值,根據(jù)列不等式組求出答案;(2)將兩個方程相加,求得6x+3y=-9,即可得到答案.【詳解】解:(1)解方程組得,∵,∴,解得;(2)由①+②得2x+y=-3,∴3(2x+y)=-9,即6x+3y=-9,∴=-9-8=-17.【點睛】此題考查解二元一次方程組,解一元一次不等式組,已知式子的值求代數(shù)式的值,正確解方程組是解題的關(guān)鍵.27.(1)購進A型飲料450箱,購進B型飲料350箱;(2)全部售完800箱飲料共盈利15500元;(3)B類飲料銷售價至少定為每箱54元【分析】(1)設(shè)購進A型飲料x箱,購進B型飲料y箱,根據(jù)題意列出方程組解答即可;(2)根據(jù)利潤的公式解答即可;(3)設(shè)B類飲料銷售價定為每箱a元,根據(jù)題意列出不等式解答即可.【詳解】解:(1)設(shè)購進A型飲料x箱,購
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 妊娠期哮喘控制與新生兒哮喘預(yù)防策略
- 顧橋礦運輸考試題及答案
- 妊娠合并術(shù)后腸梗阻的處理策略
- 2026成都二診試題及答案
- 婦產(chǎn)科實時胎心監(jiān)測:分娩決策支持系統(tǒng)
- 頭頸癌術(shù)后放療靶區(qū)勾畫與頸部血管保護策略
- 護理考試呼吸試題及答案
- 放射科考試及答案
- 多組學(xué)數(shù)據(jù)挖掘的時空特征分析
- 2025年高職建筑運營管理應(yīng)用(應(yīng)用技術(shù))試題及答案
- 2026北京市通州區(qū)事業(yè)單位公開招聘工作人員189人筆試重點基礎(chǔ)提升(共500題)附帶答案詳解
- 2025~2026學(xué)年山東省菏澤市牡丹區(qū)第二十一初級中學(xué)八年級上學(xué)期期中歷史試卷
- 2026國家統(tǒng)計局儀征調(diào)查隊招聘輔助調(diào)查員1人(江蘇)考試參考試題及答案解析
- 2025至2030中國細(xì)胞存儲行業(yè)調(diào)研及市場前景預(yù)測評估報告
- 《中華人民共和國危險化學(xué)品安全法》解讀
- 水暖施工員考試及答案
- 2025年省級行業(yè)企業(yè)職業(yè)技能競賽(老人能力評估師)歷年參考題庫含答案
- 水利工程施工質(zhì)量檢測方案
- 2025年北京高中合格考政治(第一次)試題和答案
- 卵巢類癌診治中國專家共識(2025年版)
- 培養(yǎng)員工的協(xié)議書
評論
0/150
提交評論