國際會(huì)議演講稿_第1頁
國際會(huì)議演講稿_第2頁
國際會(huì)議演講稿_第3頁
國際會(huì)議演講稿_第4頁
國際會(huì)議演講稿_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自我介紹Thankyou,Mr./Ms.Chair./professorMynameissangqian.Iamveryhonoredtobeheretodooralpresentation.IamaMasterstudentfromHohaiUniversityandIamcurrentlydoingsomeresearchonphysicallayersecurity.Today,Iwouldliketosharewithyousomeofmyresearchonrelayselectionincooperativecommunication.(external/ek?st?rn?l;?k?st?rn?l/)內(nèi)容安排:Mypresentationincludesthesefiveparts.First,somebackgroundinformationaboutthisresearch;Second,systemmodelwehavedone;Third,NN-basedrelayselectionschemewehaveproposedForth,SimulationandresultsanalysisAndlast,someconclusionswehavegotP4Partone,introductionFirstly,Iwouldliketogiveyouabitofbackground.Differingfromthetraditionalcryptographictechniquesbasedonsecretkeys,wecanmakeuseofwirelesschannelcharacteristicstoenhancephysicallayersecurity.Cooperativecommunicationhasbeenwidelyrecognizedasaneffectivewaytocombatwirelessfadingandprovidediversitygainwhichisoneoftheresearchhotspots.Machinelearningasanemergingtechnologyhasbeenwidelyappliedinimageprocessing,cancerprediction,stockanalysisandotherfields.Sowhynottryitinwirelesscommunication?P5:Next,IwanttotalkalittlebitaboutpresentstudyRecentstudiesondeeplearningforwirelesscommunicationsystemshaveproposedalternativeapproachestoenhancecertainpartsoftheconventionalcommunicationsystemsuchasmodulationrecognition、channelencodinganddecoding、channelestimationanddetectionandanautoencoderwhichcanreplacethetotalsystemwithanovelarchitecture【modulationrecognition:AnNNarchitectureformodulationrecognitionthatconsistsofa4-layerNNandtwotwo-layerNNs。channelencodinganddecoding:AplainDNNarchitectureforchanneldecodingtodecodekbitsmessagesfromNbitsnoisycodewords。channelestimationanddetection:Adense-Netforsymbol-to-symboldetectioncanadoptlongshort-termmemory(LSTM)todetectanestimatedsymbol.Autoencoder:theautoencodercanrepresenttheentirecommunicationsystemandjointlyoptimizethetransmitterandreceiveroveranAWGNchannel.】P6Sowhydidweconductthisresearch?Well,wewanttoexploitthepotentialbenefitsofdeeplearninginenhancingphysicallayersecurityincooperative(

/k??'?p?r?t?v/

wirelesscommunicationandreducethefeedbackoverheadinlimitedspectrumresoucebyourourproposedscheme.P8P9:Hereyoucanseesomefollowingexpressions.Iamnotgoingtowasteourprecioustimeonthelengthyderivation.Iwouldliketoinviteyoutodirectlytakealookattheequationinitsfinalform.Thisistheoptimalindexoftheselectedrelaywiththeconventionalrelayselectionscheme.Amaongthisexpressionrepresentstheachievablesecrecyrateofsystemmodelwhentherelayisselected.P11Hereyoucanseeafigurewhichshowsconventional3-layerneuralnetwork.Itconsistsofinputlayer,hiddenlayer1,hidden(/'h?dn/)layer2andoutputlayer.Neuralnetworkcanlearnfeaturesfromrawdataautomaticallyandadjustparameters(/p??r?m?t?(r)z/)flexibly(

/'fleks?bli/)suchasweightsandbiases.Incomplex(

/'k?mpleks/)conditions(scenarios(/s?'nɑ?r???/),)Neuralnetworkhaspromisingapplicationsinrelayselectionforseveralreasons.First,thedeepnetworkhassuperior(/su??p??r??/)learningabilitydespite(/d?'spa?t/)thecomplexchannelconditions.Second,Neuralnetworkcanhandlelargedatasetsbecauseofdistributed(/d?'str?bj?t?d/)andparallel(/'p?r?lel/)computing(/k?m'pju?t??/s,whichensurecomputation(/k?mpj?'te??(?)n/)speedandprocessingcapacity(

/k?'p?s?t?/).Third,variouslibrariesorframeworks,suchasTensorFlow,Theano,andCaffegiveitwideapplicationsInthispaper,theproblemoftherelayselectionismodeledasamulti(/'m?lt?/,ao)-classificationproblem.Weadoptsimpleneuralnetwork(NN)toselecttheoptimalrelaytoguaranteesperfectsecrecyperformanceofrelaycooperativecommunicationsystem.(enhancephysicallayersecurity)P12Beforetrainingtheclassificationmodel,weneedtomakesomepreparationfordeeplearningtoacquireatrainingsetandatestingset.First,weneedtoproducerealfeaturevectorforeachexampleaccordingtochannelstateinformation;becausethechannelstateinformationmatricesiscomposedofcomplexnumbersbutfeaturevectorsaregenerallycomposedofrealnumbers.Soweneedtochangecomplexnumbersintorealnumberswithabsolute(/'?bs?lu?t/)valueoperation.Moreover,inordertoimprovetheclassificationperformance(precision),itisnecessarytonormalizethefeaturevectors.Third,wecanmakelabelsforexamplesaccordingtoKPI.theindexoftherelaywhichobtainsthemaximum(

/'m?ks?m?m/)KPIisregardedastheclasslabeloftheexample.ClassificationmodelThispicture(isabout)showsthewholeprocessofbuildingclassificationmodel.Thewholeprocessofbuildingclassificationcanbedividedintotwophases,namelytrainingphaseandtestingphase.Inthefirstphase,weneedtochoosesuitablehyper(

/'ha?p?/)parameterstotrainneuralnetworkmodel.Inthesecondphase,wecanpredict(/pr?'d?kt/)labelsofoptimalrelayaccordingtoinputdataandassessclassificationperformance.P15Nowletmemovetopartfour-----SimulationandResults(

/r??z?lts/)AnalysisHere,youcanseeafigurewhichshowstherelationshipbetweentheaveragetransmit(

/tr?nz?m?t/)powerofthesourceandtheachievablesecrecyratewithdifferentnumbersofrelays.Theredlinearealmost(

/'??lm??st/)closetotheblueline,【whchindicatesthatourproposedscheme(i.e.theNN-basedscheme)achievesalmostthesamesecrecyratesasthoseoftheconventionalschemeforallvaluesof,】whichvalidateseffectiveness(/?'fekt?vn?s/)ofourproposedschemes.Thistableshowsthethenormalized(/?n?rm??la?zd/)meansquare(

/skwe?/)error(NMSES)valuesofdirrerentrelaynodes.ThevalueofNMSEmeanstheperformancedifferencebetweentheconventionalschemeandourproposedscheme.ThevaluesofNMSEarebelow(/b?'l??/)negative('neg?t?v/)20(),whichvalidateseffectivenessofourproposedschemeagain.P18Wehavegotthefollowingconclusions.First,Incomplex(conditions)scenarios,Neuralnetworkhaspromisingapplicationsinrelayselectionforsuperiorlearningability,computationspeedandprocessingcapacity.Second,Comparedwiththeconventionalrelayselectionscheme,ourproposedschemeachievesalmostthesamesecrecyperformance.Andlast,Ourproposedschemehasanadvantage(/?d'vɑ?nt?d?/)ofrelativelysmallfeedbackoverhead,indicatingthatproposedschemecanbeappliedtotheconditions(scenarios)wherethefeedbackislimited.(Iftheconventionalschemeneedsfeedbackofcomplexnumbers,NN-basedschemewillonlyneedfeedbackofrealnumbers.Therefore,thefeedbackoverheadofourproposedschemeishalf(/hɑ?f/

)ofthatoftheconventionalscheme,)Q&A計(jì)算復(fù)雜度ComputationalcomplexityThebiggestdrawbackisthehighlyselectioncomplexitieswithasmallnumberofrelaynodes.Ifnumberofrelaynodeisbig,itwillhaveaadvantage.Thisneedourfurtherresearch.Q:TheexperimentshowsthatsecrecyrateisalmostthesameastraditionalmethodandwhatisthepromotionofusingNNtorelayselection.(whatismeaningofintroducingNNtorelayselection)A:Thatourproposedscheme(i.e.theNN-basedscheme)achievesalmostthesameachievablesecrecyrateasthatoftheconventionalschemeindicatesthatourproposedschemeiseffectiveanditcanselectoptimalrelaynodewhichobtainsmaximumachievablesecrecyrate.Onereason(thefirstreason)isthatAdoptingNNforrelayselectionisanovelidea.Anotherreasonisthatthespectrumresourceisrelativelimitedandourproposedschemehassmallfeedbackoverhead.Q:what’sthemeaningof“perfectsecrecyperformance”?What’sthemeaningof“Comparedtotheconventionalrelayselectionscheme”?A:“perfectsecrecyperformance”meanstheachievablesecrecyrateisthebiggestonewhichcanenhancephysicallayersecurity.Infact,theconventionalrelayselectionschemeistheexhaustivesearch.Theindexofrelayselectionwiththisschemeisthebestone.Q:“Itisobviousthatthefeedbackoverheadofproposedschemeishalfofthatoftheconventionalscheme”A:well,Let'smakeanassumption.Iftheconventionalschemeneedsfeedbackofcomplexnumbers,N

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論