版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
自我介紹Thankyou,Mr./Ms.Chair./professorMynameissangqian.Iamveryhonoredtobeheretodooralpresentation.IamaMasterstudentfromHohaiUniversityandIamcurrentlydoingsomeresearchonphysicallayersecurity.Today,Iwouldliketosharewithyousomeofmyresearchonrelayselectionincooperativecommunication.(external/ek?st?rn?l;?k?st?rn?l/)內(nèi)容安排:Mypresentationincludesthesefiveparts.First,somebackgroundinformationaboutthisresearch;Second,systemmodelwehavedone;Third,NN-basedrelayselectionschemewehaveproposedForth,SimulationandresultsanalysisAndlast,someconclusionswehavegotP4Partone,introductionFirstly,Iwouldliketogiveyouabitofbackground.Differingfromthetraditionalcryptographictechniquesbasedonsecretkeys,wecanmakeuseofwirelesschannelcharacteristicstoenhancephysicallayersecurity.Cooperativecommunicationhasbeenwidelyrecognizedasaneffectivewaytocombatwirelessfadingandprovidediversitygainwhichisoneoftheresearchhotspots.Machinelearningasanemergingtechnologyhasbeenwidelyappliedinimageprocessing,cancerprediction,stockanalysisandotherfields.Sowhynottryitinwirelesscommunication?P5:Next,IwanttotalkalittlebitaboutpresentstudyRecentstudiesondeeplearningforwirelesscommunicationsystemshaveproposedalternativeapproachestoenhancecertainpartsoftheconventionalcommunicationsystemsuchasmodulationrecognition、channelencodinganddecoding、channelestimationanddetectionandanautoencoderwhichcanreplacethetotalsystemwithanovelarchitecture【modulationrecognition:AnNNarchitectureformodulationrecognitionthatconsistsofa4-layerNNandtwotwo-layerNNs。channelencodinganddecoding:AplainDNNarchitectureforchanneldecodingtodecodekbitsmessagesfromNbitsnoisycodewords。channelestimationanddetection:Adense-Netforsymbol-to-symboldetectioncanadoptlongshort-termmemory(LSTM)todetectanestimatedsymbol.Autoencoder:theautoencodercanrepresenttheentirecommunicationsystemandjointlyoptimizethetransmitterandreceiveroveranAWGNchannel.】P6Sowhydidweconductthisresearch?Well,wewanttoexploitthepotentialbenefitsofdeeplearninginenhancingphysicallayersecurityincooperative(
/k??'?p?r?t?v/
wirelesscommunicationandreducethefeedbackoverheadinlimitedspectrumresoucebyourourproposedscheme.P8P9:Hereyoucanseesomefollowingexpressions.Iamnotgoingtowasteourprecioustimeonthelengthyderivation.Iwouldliketoinviteyoutodirectlytakealookattheequationinitsfinalform.Thisistheoptimalindexoftheselectedrelaywiththeconventionalrelayselectionscheme.Amaongthisexpressionrepresentstheachievablesecrecyrateofsystemmodelwhentherelayisselected.P11Hereyoucanseeafigurewhichshowsconventional3-layerneuralnetwork.Itconsistsofinputlayer,hiddenlayer1,hidden(/'h?dn/)layer2andoutputlayer.Neuralnetworkcanlearnfeaturesfromrawdataautomaticallyandadjustparameters(/p??r?m?t?(r)z/)flexibly(
/'fleks?bli/)suchasweightsandbiases.Incomplex(
/'k?mpleks/)conditions(scenarios(/s?'nɑ?r???/),)Neuralnetworkhaspromisingapplicationsinrelayselectionforseveralreasons.First,thedeepnetworkhassuperior(/su??p??r??/)learningabilitydespite(/d?'spa?t/)thecomplexchannelconditions.Second,Neuralnetworkcanhandlelargedatasetsbecauseofdistributed(/d?'str?bj?t?d/)andparallel(/'p?r?lel/)computing(/k?m'pju?t??/s,whichensurecomputation(/k?mpj?'te??(?)n/)speedandprocessingcapacity(
/k?'p?s?t?/).Third,variouslibrariesorframeworks,suchasTensorFlow,Theano,andCaffegiveitwideapplicationsInthispaper,theproblemoftherelayselectionismodeledasamulti(/'m?lt?/,ao)-classificationproblem.Weadoptsimpleneuralnetwork(NN)toselecttheoptimalrelaytoguaranteesperfectsecrecyperformanceofrelaycooperativecommunicationsystem.(enhancephysicallayersecurity)P12Beforetrainingtheclassificationmodel,weneedtomakesomepreparationfordeeplearningtoacquireatrainingsetandatestingset.First,weneedtoproducerealfeaturevectorforeachexampleaccordingtochannelstateinformation;becausethechannelstateinformationmatricesiscomposedofcomplexnumbersbutfeaturevectorsaregenerallycomposedofrealnumbers.Soweneedtochangecomplexnumbersintorealnumberswithabsolute(/'?bs?lu?t/)valueoperation.Moreover,inordertoimprovetheclassificationperformance(precision),itisnecessarytonormalizethefeaturevectors.Third,wecanmakelabelsforexamplesaccordingtoKPI.theindexoftherelaywhichobtainsthemaximum(
/'m?ks?m?m/)KPIisregardedastheclasslabeloftheexample.ClassificationmodelThispicture(isabout)showsthewholeprocessofbuildingclassificationmodel.Thewholeprocessofbuildingclassificationcanbedividedintotwophases,namelytrainingphaseandtestingphase.Inthefirstphase,weneedtochoosesuitablehyper(
/'ha?p?/)parameterstotrainneuralnetworkmodel.Inthesecondphase,wecanpredict(/pr?'d?kt/)labelsofoptimalrelayaccordingtoinputdataandassessclassificationperformance.P15Nowletmemovetopartfour-----SimulationandResults(
/r??z?lts/)AnalysisHere,youcanseeafigurewhichshowstherelationshipbetweentheaveragetransmit(
/tr?nz?m?t/)powerofthesourceandtheachievablesecrecyratewithdifferentnumbersofrelays.Theredlinearealmost(
/'??lm??st/)closetotheblueline,【whchindicatesthatourproposedscheme(i.e.theNN-basedscheme)achievesalmostthesamesecrecyratesasthoseoftheconventionalschemeforallvaluesof,】whichvalidateseffectiveness(/?'fekt?vn?s/)ofourproposedschemes.Thistableshowsthethenormalized(/?n?rm??la?zd/)meansquare(
/skwe?/)error(NMSES)valuesofdirrerentrelaynodes.ThevalueofNMSEmeanstheperformancedifferencebetweentheconventionalschemeandourproposedscheme.ThevaluesofNMSEarebelow(/b?'l??/)negative('neg?t?v/)20(),whichvalidateseffectivenessofourproposedschemeagain.P18Wehavegotthefollowingconclusions.First,Incomplex(conditions)scenarios,Neuralnetworkhaspromisingapplicationsinrelayselectionforsuperiorlearningability,computationspeedandprocessingcapacity.Second,Comparedwiththeconventionalrelayselectionscheme,ourproposedschemeachievesalmostthesamesecrecyperformance.Andlast,Ourproposedschemehasanadvantage(/?d'vɑ?nt?d?/)ofrelativelysmallfeedbackoverhead,indicatingthatproposedschemecanbeappliedtotheconditions(scenarios)wherethefeedbackislimited.(Iftheconventionalschemeneedsfeedbackofcomplexnumbers,NN-basedschemewillonlyneedfeedbackofrealnumbers.Therefore,thefeedbackoverheadofourproposedschemeishalf(/hɑ?f/
)ofthatoftheconventionalscheme,)Q&A計(jì)算復(fù)雜度ComputationalcomplexityThebiggestdrawbackisthehighlyselectioncomplexitieswithasmallnumberofrelaynodes.Ifnumberofrelaynodeisbig,itwillhaveaadvantage.Thisneedourfurtherresearch.Q:TheexperimentshowsthatsecrecyrateisalmostthesameastraditionalmethodandwhatisthepromotionofusingNNtorelayselection.(whatismeaningofintroducingNNtorelayselection)A:Thatourproposedscheme(i.e.theNN-basedscheme)achievesalmostthesameachievablesecrecyrateasthatoftheconventionalschemeindicatesthatourproposedschemeiseffectiveanditcanselectoptimalrelaynodewhichobtainsmaximumachievablesecrecyrate.Onereason(thefirstreason)isthatAdoptingNNforrelayselectionisanovelidea.Anotherreasonisthatthespectrumresourceisrelativelimitedandourproposedschemehassmallfeedbackoverhead.Q:what’sthemeaningof“perfectsecrecyperformance”?What’sthemeaningof“Comparedtotheconventionalrelayselectionscheme”?A:“perfectsecrecyperformance”meanstheachievablesecrecyrateisthebiggestonewhichcanenhancephysicallayersecurity.Infact,theconventionalrelayselectionschemeistheexhaustivesearch.Theindexofrelayselectionwiththisschemeisthebestone.Q:“Itisobviousthatthefeedbackoverheadofproposedschemeishalfofthatoftheconventionalscheme”A:well,Let'smakeanassumption.Iftheconventionalschemeneedsfeedbackofcomplexnumbers,N
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025黑龍江森林采伐行業(yè)市場(chǎng)需求供給分析及投資發(fā)展可行性報(bào)告
- 2025黑色煤炭資源市場(chǎng)供需研究涉及投資方向分析預(yù)測(cè)報(bào)告
- 2025中國電信濱海分公司招聘2人考試筆試備考題庫及答案解析
- 2025廣西百色西林縣消防救援大隊(duì)政府專職消防員招聘15人筆試考試備考試題及答案解析
- 2025鮮奶批發(fā)市場(chǎng)現(xiàn)狀分析及投資評(píng)估發(fā)展規(guī)劃研究報(bào)告
- 2025魚絲行業(yè)市場(chǎng)供需分析投資評(píng)估規(guī)劃及發(fā)展戰(zhàn)略報(bào)告
- 2025香蕉純素奶茶制作現(xiàn)狀與前景發(fā)展趨勢(shì)分析報(bào)告
- 2025香料行業(yè)市場(chǎng)運(yùn)行分析及發(fā)展趨勢(shì)與管理策略研究報(bào)告
- 2025預(yù)測(cè)性維護(hù)行業(yè)市場(chǎng)現(xiàn)狀調(diào)研技術(shù)發(fā)展趨勢(shì)與投資規(guī)劃分析報(bào)告
- 2025預(yù)制菜行業(yè)食品安全管理體系搭建及供應(yīng)鏈追溯與質(zhì)量危機(jī)應(yīng)對(duì)方案研究報(bào)告
- 廣東深圳市2026屆化學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析
- 電力公司考試大題題庫及答案
- 國企金融招聘筆試題及答案
- 重慶市金太陽好教育聯(lián)盟2026屆高三10月聯(lián)考(26-65C)英語(含答案)
- 成都市龍泉驛區(qū)衛(wèi)生健康局下屬15家醫(yī)療衛(wèi)生事業(yè)單位2025年下半年公開考試招聘工作人員(18人)備考考試題庫附答案解析
- 2025-2030中國光纖分布式測(cè)溫系統(tǒng)市場(chǎng)需求預(yù)測(cè)報(bào)告
- 因甲方原因造成停工的聯(lián)系函示例
- 急救藥品物品使用規(guī)范與操作流程
- 煤矸石填溝造地綜合利用項(xiàng)目規(guī)劃設(shè)計(jì)方案
- 財(cái)稅SaaS助力小微企業(yè)降本增效2025年實(shí)操指南
- 儲(chǔ)能電站施工培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論