湖北省黃岡市黃岡中學2024屆中考三模數(shù)學試題含解析_第1頁
湖北省黃岡市黃岡中學2024屆中考三模數(shù)學試題含解析_第2頁
湖北省黃岡市黃岡中學2024屆中考三模數(shù)學試題含解析_第3頁
湖北省黃岡市黃岡中學2024屆中考三模數(shù)學試題含解析_第4頁
湖北省黃岡市黃岡中學2024屆中考三模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省黃岡市黃岡中學2024屆中考三模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,把一個矩形紙片ABCD沿EF折疊后,點D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′為()。A.70° B.65° C.50° D.25°2.在2014年5月崇左市教育局舉行的“經(jīng)典詩朗誦”演講比賽中,有11名學生參加決賽,他們決賽的成績各不相同,其中的一名學生想知道自己能否進入前6名,不僅要了解自己的成績,還要了解這11名學生成績的()A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差3.有五名射擊運動員,教練為了分析他們成績的波動程度,應選擇下列統(tǒng)計量中的()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)4.已知是二元一次方程組的解,則m+3n的值是()A.4 B.6 C.7 D.85.如圖,是某幾何體的三視圖及相關數(shù)據(jù),則該幾何體的側面積是()A.10π B.15π C.20π D.30π6.將拋物線y=2x2向左平移3個單位得到的拋物線的解析式是()A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)27.如圖,嘉淇同學拿20元錢正在和售貨員對話,且一本筆記本比一支筆貴3元,請你仔細看圖,1本筆記本和1支筆的單價分別為()A.5元,2元 B.2元,5元C.4.5元,1.5元 D.5.5元,2.5元8.如圖,,則的度數(shù)為()A.115° B.110° C.105° D.65°9.已知,下列說法中,不正確的是()A. B.與方向相同C. D.10.鄭州地鐵Ⅰ號線火車站站口分布如圖所示,有A,B,C,D,E五個進出口,小明要從這里乘坐地鐵去新鄭機場,回來后仍從這里出站,則他恰好選擇從同一個口進出的概率是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在四邊形ABCD中,,AC、BD相交于點E,若,則______.12.________.13.甲、乙兩個搬運工搬運某種貨物.已知乙比甲每小時多搬運600kg,甲搬運5000kg所用的時間與乙搬運8000kg所用的時間相等.設甲每小時搬運xkg貨物,則可列方程為_____.14.舉重比賽的總成績是選手的挺舉與抓舉兩項成績之和,若其中一項三次挑戰(zhàn)失敗,則該項成績?yōu)?,甲、乙是同一重量級別的舉重選手,他們近三年六次重要比賽的成績如下(單位:公斤):如果你是教練,要選派一名選手參加國際比賽,那么你會選擇_____(填“甲”或“乙”),理由是___________.15.安全問題大于天,為加大宣傳力度,提高學生的安全意識,樂陵某學校在進行防溺水安全教育活動中,將以下幾種在游泳時的注意事項寫在紙條上并折好,內容分別是:①互相關心;②互相提醒;③不要相互嬉水;④相互比潛水深度;⑤選擇水流湍急的水域;⑥選擇有人看護的游泳池.小穎從這6張紙條中隨機抽出一張,抽到內容描述正確的紙條的概率是_____.16.已知點、都在反比例函數(shù)的圖象上,若,則k的值可以取______寫出一個符合條件的k值即可.17.如圖,點M、N分別在∠AOB的邊OA、OB上,將∠AOB沿直線MN翻折,設點O落在點P處,如果當OM=4,ON=3時,點O、P的距離為4,那么折痕MN的長為______.三、解答題(共7小題,滿分69分)18.(10分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:分組頻數(shù)頻率第一組(0≤x<15)30.15第二組(15≤x<30)6a第三組(30≤x<45)70.35第四組(45≤x<60)b0.20(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?19.(5分)某小學為了了解學生每天完成家庭作業(yè)所用時間的情況,從每班抽取相同數(shù)量的學生進行調查,并將所得數(shù)據(jù)進行整理,制成條形統(tǒng)計圖和扇形統(tǒng)計圖如下:補全條形統(tǒng)計圖;求扇形統(tǒng)計圖扇形D的圓心角的度數(shù);若該中學有2000名學生,請估計其中有多少名學生能在1.5小時內完成家庭作業(yè)?20.(8分)如圖,河的兩岸MN與PQ相互平行,點A,B是PQ上的兩點,C是MN上的點,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,測得∠CBQ=60°,求這條河的寬是多少米?(結果精確到0.1米,參考數(shù)據(jù)≈1.414,≈1.732)21.(10分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線DE交AC于點E.(1)求證:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的長為a,求DE、EC和弧DC圍成的部分的面積S.(用含字母a的式子表示).22.(10分)桌面上放有4張卡片,正面分別標有數(shù)字1,2,3,4,這些卡片除數(shù)字外完全相同.把這些卡片反面朝上洗勻后放在桌面上,甲從中任意抽出一張,記下卡片上的數(shù)字后仍放反面朝上放回洗勻,乙從中任意抽出一張,記下卡片上的數(shù)字,然后將這兩數(shù)相加.(1)請用列表或畫樹狀圖的方法求兩數(shù)和為5的概率;(2)若甲與乙按上述方式做游戲,當兩數(shù)之和為5時,甲勝;反之則乙勝;若甲勝一次得12分,那么乙勝一次得多少分,才能使這個游戲對雙方公平?23.(12分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=

(x>0)的圖象交于A(2,﹣1),B(,n)兩點,直線y=2與y軸交于點C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求△ABC的面積.24.(14分)為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.求購買A型和B型公交車每輛各需多少萬元?預計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】

首先根據(jù)AD∥BC,求出∠FED的度數(shù),然后根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大小.【題目詳解】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折疊的性質知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故選:C.【題目點撥】此題考查了長方形的性質與折疊的性質.此題比較簡單,解題的關鍵是注意數(shù)形結合思想的應用.2、B【解題分析】

解:11人成績的中位數(shù)是第6名的成績.參賽選手要想知道自己是否能進入前6名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.故選B.【題目點撥】本題考查統(tǒng)計量的選擇,掌握中位數(shù)的意義是本題的解題關鍵.3、A【解題分析】試題分析:方差是用來衡量一組數(shù)據(jù)波動大小的量,體現(xiàn)數(shù)據(jù)的穩(wěn)定性,集中程度;方差越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,數(shù)據(jù)越穩(wěn)定.故教練要分析射擊運動員成績的波動程度,只需要知道訓練成績的方差即可.故選A.考點:1、計算器-平均數(shù),2、中位數(shù),3、眾數(shù),4、方差4、D【解題分析】分析:根據(jù)二元一次方程組的解,直接代入構成含有m、n的新方程組,解方程組求出m、n的值,代入即可求解.詳解:根據(jù)題意,將代入,得:,①+②,得:m+3n=8,故選D.點睛:此題主要考查了二元一次方程組的解,利用代入法求出未知參數(shù)是解題關鍵,比較簡單,是??碱}型.5、B【解題分析】由三視圖可知此幾何體為圓錐,∴圓錐的底面半徑為3,母線長為5,∵圓錐的底面周長等于圓錐的側面展開扇形的弧長,∴圓錐的底面周長=圓錐的側面展開扇形的弧長=2πr=2π×3=6π,∴圓錐的側面積=lr=×6π×5=15π,故選B6、C【解題分析】

按照“左加右減,上加下減”的規(guī)律,從而選出答案.【題目詳解】y=2x2向左平移3個單位得到的拋物線的解析式是y=2(x+3)2,故答案選C.【題目點撥】本題主要考查了拋物線的平移以及拋物線解析式的變換規(guī)律,解本題的要點在于熟知“左加右減,上加下減”的變化規(guī)律.7、A【解題分析】

可設1本筆記本的單價為x元,1支筆的單價為y元,由題意可得等量關系:①3本筆記本的費用+2支筆的費用=19元,②1本筆記本的費用﹣1支筆的費用=3元,根據(jù)等量關系列出方程組,再求解即可.【題目詳解】設1本筆記本的單價為x元,1支筆的單價為y元,依題意有:,解得:.故1本筆記本的單價為5元,1支筆的單價為2元.故選A.【題目點撥】本題考查了二元一次方程組的應用,關鍵是正確理解題意,找出題目中的等量關系設出未知數(shù),列出方程組.8、A【解題分析】

根據(jù)對頂角相等求出∠CFB=65°,然后根據(jù)CD∥EB,判斷出∠B=115°.【題目詳解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°?65°=115°,故選:A.【題目點撥】本題考查了平行線的性質,知道“兩直線平行,同旁內角互補”是解題的關鍵.9、A【解題分析】

根據(jù)平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應用.【題目詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.【題目點撥】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.10、C【解題分析】

列表得出進出的所有情況,再從中確定出恰好選擇從同一個口進出的結果數(shù),繼而根據(jù)概率公式計算可得.【題目詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25種等可能的情況,恰好選擇從同一個口進出的有5種情況,∴恰好選擇從同一個口進出的概率為=,故選C.【題目點撥】此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】

利用相似三角形的性質即可求解;【題目詳解】解:∵AB∥CD,∴△AEB∽△CED,∴,∴,故答案為.【題目點撥】本題考查相似三角形的性質和判定,解題的關鍵是熟練掌握相似三角形的性質.12、1【解題分析】

先將二次根式化為最簡,然后再進行二次根式的乘法運算即可.【題目詳解】解:原式=2×=1.故答案為1.【題目點撥】本題考查了二次根式的乘法運算,屬于基礎題,掌握運算法則是關鍵.13、=【解題分析】

設甲每小時搬運x千克,則乙每小時搬運(x+600)千克,根據(jù)甲搬運5000kg所用時間與乙搬運8000kg所用時間相等建立方程求出其解就可以得出結論.【題目詳解】解:設甲每小時搬運x千克,則乙每小時搬運(x+600)千克,由題意得:=.故答案是:=.【題目點撥】本題考查了由實際問題抽象出分式方程,根據(jù)題意找到等量關系是關鍵.14、乙乙的比賽成績比較穩(wěn)定.【解題分析】

觀察表格中的數(shù)據(jù)可知:甲的比賽成績波動幅度較大,故甲的比賽成績不穩(wěn)定;乙的比賽成績波動幅度較小,故乙的比賽成績比較穩(wěn)定,據(jù)此可得結論.【題目詳解】觀察表格中的數(shù)據(jù)可得,甲的比賽成績波動幅度較大,故甲的比賽成績不穩(wěn)定;乙的比賽成績波動幅度較小,故乙的比賽成績比較穩(wěn)定;所以要選派一名選手參加國際比賽,應該選擇乙,理由是乙的比賽成績比較穩(wěn)定.故答案為乙,乙的比賽成績比較穩(wěn)定.【題目點撥】本題主要考查了方差,方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則它與其平均值的離散程度越小,穩(wěn)定性越好.15、【解題分析】

根據(jù)事件的描述可得到描述正確的有①②③⑥,即可得到答案.【題目詳解】∵共有6張紙條,其中正確的有①互相關心;②互相提醒;③不要相互嬉水;⑥選擇有人看護的游泳池,共4張,∴抽到內容描述正確的紙條的概率是,故答案為:.【題目點撥】此題考查簡單事件的概率的計算,正確掌握事件的概率計算公式是解題的關鍵.16、-1【解題分析】

利用反比例函數(shù)的性質,即可得到反比例函數(shù)圖象在第一、三象限,進而得出,據(jù)此可得k的取值.【題目詳解】解:點、都在反比例函數(shù)的圖象上,,

在每個象限內,y隨著x的增大而增大,

反比例函數(shù)圖象在第一、三象限,

,

的值可以取等,答案不唯一

故答案為:.【題目點撥】本題考查反比例函數(shù)圖象上的點的坐標特征,解答本題的關鍵是明確題意,利用反比例函數(shù)的性質解答.17、【解題分析】

由折疊的性質可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的長,即可求MN的長.【題目詳解】設MN與OP交于點E,

∵點O、P的距離為4,

∴OP=4

∵折疊

∴MN⊥OP,EO=EP=2,

在Rt△OME中,ME=在Rt△ONE中,NE=∴MN=ME-NE=2-故答案為2-【題目點撥】本題考查了翻折變換,勾股定理,利用勾股定理求線段的長度是本題的關鍵.三、解答題(共7小題,滿分69分)18、0.34【解題分析】

(1)由統(tǒng)計圖易得a與b的值,繼而將統(tǒng)計圖補充完整;(2)利用用樣本估計總體的知識求解即可求得答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與所選兩人正好都是甲班學生的情況,再利用概率公式即可求得答案.【題目詳解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵總人數(shù)為:3÷0.15=20(人),∴b=20×0.20=4(人);故答案為0.3,4;補全統(tǒng)計圖得:(2)估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有:180×(0.35+0.20)=99(人);(3)畫樹狀圖得:∵共有12種等可能的結果,所選兩人正好都是甲班學生的有3種情況,∴所選兩人正好都是甲班學生的概率是:=.【題目點撥】本題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)補圖見解析;(2)27°;(3)1800名【解題分析】

(1)根據(jù)A類的人數(shù)是10,所占的百分比是25%即可求得總人數(shù),然后根據(jù)百分比的意義求得B類的人數(shù);

(2)用360°乘以對應的比例即可求解;

(3)用總人數(shù)乘以對應的百分比即可求解.【題目詳解】(1)抽取的總人數(shù)是:10÷25%=40(人),在B類的人數(shù)是:40×30%=12(人).;(2)扇形統(tǒng)計圖扇形D的圓心角的度數(shù)是:360×=27°;(3)能在1.5小時內完成家庭作業(yè)的人數(shù)是:2000×(25%+30%+35%)=1800(人).考點:條形統(tǒng)計圖、扇形統(tǒng)計圖.20、17.3米.【解題分析】分析:過點C作于D,根據(jù),得到,在中,解三角形即可得到河的寬度.詳解:過點C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:這條河的寬是米.點睛:考查解直角三角形的應用,作出輔助線,構造直角三角形是解題的關鍵.21、(1)見解析;(2)75﹣a.【解題分析】

(1)連接CD,求出∠ADC=90°,根據(jù)切線長定理求出DE=EC,即可求出答案;(2)連接CD、OD、OE,求出扇形DOC的面積,分別求出△ODE和△OCE的面積,即可求出答案【題目詳解】(1)證明:連接DC,∵BC是⊙O直徑,∴∠BDC=90°,∴∠ADC=90°,∵∠C=90°,BC為直徑,∴AC切⊙O于C,∵過點D作⊙O的切線DE交AC于點E,∴DE=CE,∴∠EDC=∠ECD,∵∠ACB=∠ADC=90°,∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,∴∠A=∠ADE;(2)解:連接CD、OD、OE,∵DE=10,DE=CE,∴CE=10,∵∠A=∠ADE,∴AE=DE=10,∴AC=20,∵∠ACB=90°,AB=25,∴由勾股定理得:BC===15,∴CO=OD=,∵的長度是a,∴扇形DOC的面積是×a×=a,∴DE、EC和弧DC圍成的部分的面積S=××10+×10﹣a=75﹣a.【題目點撥】本題考查了圓周角定理,切線的性質,切線長定理,等腰三角形的性質和判定,勾股定理,扇形的面積,三角形的面積等知識點,能綜合運用知識點進行推理和計算是解此題的關鍵.22、(1)詳見解析;(2)4分.【解題分析】

(1)根據(jù)題意用列表法求出答案;(2)算出甲乙獲勝的概率,從而求出乙勝一次的得分.【題目詳解】(1)列表如下:由列表可得:P(數(shù)字之和為5)=,(2)因為P(甲勝)=,P(乙勝)=,∴甲勝一次得12分,要使這個游戲對雙方公平,乙勝一次得分應為:12÷3=4分.【題目點撥】本題考查概率問題中的公平性問題,解決本題的關鍵是計算出各種情況的概率,然后比較即可.23、(1)y=2x﹣5,;(2).【解題分析】

試題分析:(1)把A坐標代入反比例解析式求出m的值,確定出反比例解析式,再將B坐標代入求出n的值,確定出B坐標,將A與B坐標代入

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論