2024屆福建省龍巖市永定二中學、三中學聯(lián)考中考數(shù)學全真模擬試卷含解析_第1頁
2024屆福建省龍巖市永定二中學、三中學聯(lián)考中考數(shù)學全真模擬試卷含解析_第2頁
2024屆福建省龍巖市永定二中學、三中學聯(lián)考中考數(shù)學全真模擬試卷含解析_第3頁
2024屆福建省龍巖市永定二中學、三中學聯(lián)考中考數(shù)學全真模擬試卷含解析_第4頁
2024屆福建省龍巖市永定二中學、三中學聯(lián)考中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆福建省龍巖市永定二中學、三中學聯(lián)考中考數(shù)學全真模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.的值是A.±3 B.3 C.9 D.812.如圖所示,如果將一副三角板按如圖方式疊放,那么∠1等于()A. B. C. D.3.2017年,太原市GDP突破三千億元大關,達到3382億元,經濟總量比上年增長了426.58億元,達到近三年來增量的最高水平,數(shù)據(jù)“3382億元”用科學記數(shù)法表示為()A.3382×108元B.3.382×108元C.338.2×109元D.3.382×1011元4.如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.5.在國家“一帶一路”倡議下,我國與歐洲開通了互利互惠的中歐專列.行程最長,途經城市和國家最多的一趟專列全程長13000km,將13000用科學記數(shù)法表示應為()A.0.13×105 B.1.3×104 C.1.3×105 D.13×1036.某校八年級兩個班,各選派10名學生參加學校舉行的“古詩詞”大賽,各參賽選手成績的數(shù)據(jù)分析如表所示,則以下判斷錯誤的是()班級平均數(shù)中位數(shù)眾數(shù)方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的總分高于八(1)班B.八(2)班的成績比八(1)班穩(wěn)定C.兩個班的最高分在八(2)班D.八(2)班的成績集中在中上游7.下列各式中計算正確的是()A.x3?x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t8.某美術社團為練習素描,他們第一次用120元買了若干本相同的畫冊,第二次用240元在同一家商店買與上一次相同的畫冊,這次商家每本優(yōu)惠4元,結果比上次多買了20本.求第一次買了多少本畫冊?設第一次買了x本畫冊,列方程正確的是()A. B.C. D.9.在一次男子馬拉松長跑比賽中,隨機抽取了10名選手,記錄他們的成績(所用的時間)如下:選手12345678910時間(min)129136140145146148154158165175由此所得的以下推斷不正確的是()A.這組樣本數(shù)據(jù)的平均數(shù)超過130B.這組樣本數(shù)據(jù)的中位數(shù)是147C.在這次比賽中,估計成績?yōu)?30min的選手的成績會比平均成績差D.在這次比賽中,估計成績?yōu)?42min的選手,會比一半以上的選手成績要好10.一個正方體的平面展開圖如圖所示,將它折成正方體后“建”字對面是()A.和 B.諧 C.涼 D.山二、填空題(本大題共6個小題,每小題3分,共18分)11.拋物線y=﹣x2+bx+c的部分圖象如圖所示,則關于x的一元二次方程﹣x2+bx+c=0的解為_____.12.如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=(x<0)的圖象相交于點A和點B.當y1>y2>0時,x的取值范圍是_____.13.某?!鞍僮兡Х健鄙鐖F為組織同學們參加學??萍脊?jié)的“最強大腦”大賽,準備購買A,B兩款魔方.社長發(fā)現(xiàn)若購買2個A款魔方和6個B款魔方共需170元,購買3個A款魔方和購買8個B款魔方所需費用相同.求每款魔方的單價.設A款魔方的單價為x元,B款魔方的單價為y元,依題意可列方程組為_______.14.的相反數(shù)是______.15.如圖,已知點A是一次函數(shù)y=x(x≥0)圖象上一點,過點A作x軸的垂線l,B是l上一點(B在A上方),在AB的右側以AB為斜邊作等腰直角三角形ABC,反比例函數(shù)y=(x>0)的圖象過點B,C,若△OAB的面積為5,則△ABC的面積是________.16.如圖,Rt△ABC的直角邊BC在x軸上,直線y=x﹣經過直角頂點B,且平分△ABC的面積,BC=3,點A在反比例函數(shù)y=圖象上,則k=_______.三、解答題(共8題,共72分)17.(8分)計算:﹣4cos45°+()﹣1+|﹣2|.18.(8分)如圖,△ABC與△A1B1C1是位似圖形.(1)在網格上建立平面直角坐標系,使得點A的坐標為(-6,-1),點C1的坐標為(-3,2),則點B的坐標為____________;(2)以點A為位似中心,在網格圖中作△AB2C2,使△AB2C2和△ABC位似,且位似比為1∶2;(3)在圖上標出△ABC與△A1B1C1的位似中心P,并寫出點P的坐標為________,計算四邊形ABCP的周長為_______.19.(8分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:(1)△ABE≌△CDF;(2)四邊形BFDE是平行四邊形.20.(8分)(1)解方程:x2﹣4x﹣3=0;(2)解不等式組:x-3(x-2)≤421.(8分)如圖,△ABC中,∠C=90°,AC=BC,∠ABC的平分線BD交AC于點D,DE⊥AB于點E.(1)依題意補全圖形;(2)猜想AE與CD的數(shù)量關系,并證明.22.(10分)如圖是東方貨站傳送貨物的平面示意圖,為了提高安全性,工人師傅打算減小傳送帶與地面的夾角,由原來的45°改為36°,已知原傳送帶BC長為4米,求新傳送帶AC的長及新、原傳送帶觸地點之間AB的長.(結果精確到0.1米)參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.41423.(12分)如圖,直線y=﹣x+4與x軸交于點A,與y軸交于點B.拋物線y=﹣x2+bx+c經過A,B兩點,與x軸的另外一個交點為C填空:b=,c=,點C的坐標為.如圖1,若點P是第一象限拋物線上的點,連接OP交直線AB于點Q,設點P的橫坐標為m.PQ與OQ的比值為y,求y與m的數(shù)學關系式,并求出PQ與OQ的比值的最大值.如圖2,若點P是第四象限的拋物線上的一點.連接PB與AP,當∠PBA+∠CBO=45°時.求△PBA的面積.24.如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=kx的圖象交于C,D兩點,與x,y軸交于B,A兩點,且tan∠ABO=12,OB=4,OE=2(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;(2)求△OCD的面積;(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】試題解析:∵∴的值是3故選C.2、B【解題分析】解:如圖,∠2=90°﹣45°=45°,由三角形的外角性質得,∠1=∠2+60°=45°+60°=105°.故選B.點睛:本題考查了三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質是解題的關鍵.3、D【解題分析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】3382億=338200000000=3.382×1.故選:D.【題目點撥】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.4、B【解題分析】

設以AB、AC為直徑作半圓交BC于D點,連AD,如圖,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴陰影部分面積=半圓AC的面積+半圓AB的面積﹣△ABC的面積,=π?52﹣?16?6,=25π﹣1.故選B.5、B【解題分析】試題分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).將13000用科學記數(shù)法表示為:1.3×1.故選B.考點:科學記數(shù)法—表示較大的數(shù)6、C【解題分析】

直接利用表格中數(shù)據(jù),結合方差的定義以及算術平均數(shù)、中位數(shù)、眾數(shù)得出答案.【題目詳解】A選項:八(2)班的平均分高于八(1)班且人數(shù)相同,所以八(2)班的總分高于八(1)班,正確;

B選項:八(2)班的方差比八(1)班小,所以八(2)班的成績比八(1)班穩(wěn)定,正確;

C選項:兩個班的最高分無法判斷出現(xiàn)在哪個班,錯誤;

D選項:八(2)班的中位數(shù)高于八(1)班,所以八(2)班的成績集中在中上游,正確;

故選C.【題目點撥】考查了方差的定義以及算術平均數(shù)、中位數(shù)、眾數(shù),利用表格獲取正確的信息是解題關鍵.7、D【解題分析】試題解析:A、原式計算錯誤,故本選項錯誤;B、原式計算錯誤,故本選項錯誤;C、原式計算錯誤,故本選項錯誤;D、原式計算正確,故本選項正確;故選D.點睛:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.8、A【解題分析】分析:由設第一次買了x本資料,則設第二次買了(x+20)本資料,由等量關系:第二次比第一次每本優(yōu)惠4元,即可得到方程.詳解:設他上月買了x本筆記本,則這次買了(x+20)本,根據(jù)題意得:.故選A.點睛:本題考查了分式方程的應用,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程解答即可.9、C【解題分析】分析:要求平均數(shù)只要求出數(shù)據(jù)之和再除以總個數(shù)即可;對于中位數(shù),因圖中是按從小到大的順序排列的,所以只要找出最中間的一個數(shù)(或最中間的兩個數(shù))即可求解.詳解:平均數(shù)=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故這組樣本數(shù)據(jù)的平均數(shù)超過130,A正確,C錯誤;因為表中是按從小到大的順序排列的,一共10名選手,中位數(shù)為第五位和第六位的平均數(shù),故中位數(shù)是(146+148)÷2=147(min),故B正確,D正確.故選C.點睛:本題考查的是平均數(shù)和中位數(shù)的定義.要注意,當所給數(shù)據(jù)有單位時,所求得的平均數(shù)和中位數(shù)與原數(shù)據(jù)的單位相同,不要漏單位.10、D【解題分析】分析:本題考查了正方體的平面展開圖,對于正方體的平面展開圖中相對的面一定相隔一個小正方形,據(jù)此作答.詳解:對于正方體的平面展開圖中相對的面一定相隔一個小正方形,由圖形可知,與“建”字相對的字是“山”.故選:D.點睛:注意正方體的空間圖形,從相對面入手,分析及解答問題.二、填空題(本大題共6個小題,每小題3分,共18分)11、x1=1,x2=﹣1.【解題分析】

直接觀察圖象,拋物線與x軸交于1,對稱軸是x=﹣1,所以根據(jù)拋物線的對稱性可以求得拋物線與x軸的另一交點坐標,從而求得關于x的一元二次方程﹣x2+bx+c=0的解.【題目詳解】解:觀察圖象可知,拋物線y=﹣x2+bx+c與x軸的一個交點為(1,0),對稱軸為x=﹣1,∴拋物線與x軸的另一交點坐標為(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解為x1=1,x2=﹣1.故本題答案為:x1=1,x2=﹣1.【題目點撥】本題考查了二次函數(shù)與一元二次方程的關系.一元二次方程-x2+bx+c=0的解實質上是拋物線y=-x2+bx+c與x軸交點的橫坐標的值.12、-2<x<-0.5【解題分析】

根據(jù)圖象可直接得到y(tǒng)1>y2>0時x的取值范圍.【題目詳解】根據(jù)圖象得:當y1>y2>0時,x的取值范圍是﹣2<x<﹣0.5,故答案為﹣2<x<﹣0.5.【題目點撥】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,熟悉待定系數(shù)法以及理解函數(shù)圖象與不等式的關系是解題的關鍵.13、【解題分析】分析:設A款魔方的單價為x元,B魔方單價為y元,根據(jù)“購買兩個A款魔方和6個B款魔方共需170元,購買3個A款魔方和購買8個B款魔方所需費用相同”,即可得出關于x,y的二元一次方程組,此題得解.解:設A魔方的單價為x元,B款魔方的單價為y元,根據(jù)題意得:故答案為點睛:本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.14、﹣.【解題分析】

根據(jù)只有符號不同的兩個數(shù)叫做互為相反數(shù)解答.【題目詳解】的相反數(shù)是.故答案為.【題目點撥】本題考查的知識點是相反數(shù),解題關鍵是熟記相反數(shù)的概念.15、【解題分析】

如圖,過C作CD⊥y軸于D,交AB于E.設AB=2a,則BE=AE=CE=a,再設A(x,x),則B(x,x+2a)、C(x+a,x+a),再由B、C在反比例函數(shù)的圖象上可得x(x+2a)=(x+a)(x+a),解得x=3a,由△OAB的面積為5求得ax=5,即可得a2=,根據(jù)S△ABC=AB?CE即可求解.【題目詳解】如圖,過C作CD⊥y軸于D,交AB于E.∵AB⊥x軸,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,設AB=2a,則BE=AE=CE=a,設A(x,x),則B(x,x+2a),C(x+a,x+a),∵B、C在反比例函數(shù)的圖象上,∴x(x+2a)=(x+a)(x+a),解得x=3a,∵S△OAB=AB?DE=?2a?x=5,∴ax=5,∴3a2=5,∴a2=,∴S△ABC=AB?CE=?2a?a=a2=.故答案為:.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標特征、等腰直角三角形的性質、三角形面積,熟練掌握反比例函數(shù)上的點符合反比例函數(shù)的關系式是關鍵.16、1【解題分析】分析:根據(jù)題意得出點B的坐標,根據(jù)面積平分得出點D的坐標,利用三角形相似可得點A的坐標,從而求出k的值.詳解:根據(jù)一次函數(shù)可得:點B的坐標為(1,0),∵BD平分△ABC的面積,BC=3∴點D的橫坐標1.5,∴點D的坐標為,∵DE:AB=1:1,∴點A的坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是反比例函數(shù)的性質以及三角形相似的應用,屬于中等難度的題型.得出點D的坐標是解決這個問題的關鍵.三、解答題(共8題,共72分)17、4【解題分析】分析:代入45°角的余弦函數(shù)值,結合“負整數(shù)指數(shù)冪的意義”和“二次根式的相關運算法則”進行計算即可.詳解:原式=.點睛:熟記“特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪的意義:(為正整數(shù))”是正確解答本題的關鍵.18、(1)作圖見解析;點B的坐標為:(﹣2,﹣5);(2)作圖見解析;(3)【解題分析】分析:(1)直接利用已知點位置得出B點坐標即可;(2)直接利用位似圖形的性質得出對應點位置進而得出答案;(3)直接利用位似圖形的性質得出對應點交點即可位似中心,再利用勾股定理得出四邊形ABCP的周長.詳解:(1)如圖所示:點B的坐標為:(﹣2,﹣5);故答案為(﹣2,﹣5);(2)如圖所示:△AB2C2,即為所求;(3)如圖所示:P點即為所求,P點坐標為:(﹣2,1),四邊形ABCP的周長為:+++=4+2+2+2=6+4.故答案為6+4.點睛:本題主要考查了位似變換以及勾股定理,正確利用位似圖形的性質分析是解題的關鍵.19、(1)見解析;(2)見解析;【解題分析】

(1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對邊相等,對角相等的性質,即可證得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF.根據(jù)對邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形.【題目詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四邊形BFDE是平行四邊形.20、(1)x1=2+7【解題分析】試題分析:利用配方法進行解方程;首先分別求出兩個不等式的解,然后得出不等式組的解.試題解析:(1)x2-1x=3x2-1x+1=7(x-2)解得:x1=2+(2)解不等式1,得x≥1解不等式2,得x<1∴不等式組的解集是1≤x<1考點:一元二次方程的解法;不等式組.21、(1)見解析;(2)見解析.【解題分析】

(1)根據(jù)題意畫出圖形即可;(2)利用等腰三角形的性質得∠A=45°.則∠ADE=∠A=45°,所以AE=DE,再根據(jù)角平分線性質得CD=DE,從而得到AE=CD.【題目詳解】解:(1)如圖:(2)AE與CD的數(shù)量關系為AE=CD.證明:∵∠C=90°,AC=BC,∴∠A=45°.∵DE⊥AB,∴∠ADE=∠A=45°.∴AE=DE,∵BD平分∠ABC,∴CD=DE,∴AE=CD.【題目點撥】此題考查等腰三角形的性質,角平分線的性質,解題關鍵在于根據(jù)題意作輔助線.22、新傳送帶AC的長為1.8m,新、原傳送帶觸地點之間AB的長約為1.2m.【解題分析】

根據(jù)題意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的長,再表示出AD的長,進而求出AB的長.【題目詳解】解:如圖,作CD⊥AB于點D,由題意可得:∠A=36°,∠CBD=15°,BC=1.在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.∵∠CBD=15°,∴BD=CD=2.在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.答:新傳送帶AC的長為1.8m,新、原傳送帶觸地點之間AB的長約為1.2m.【題目點撥】本題考查了坡度坡角問題,正確構建直角三角形再求出BD的長是解題的關鍵.23、(3)3,2,C(﹣2,4);(2)y=﹣m2+m,PQ與OQ的比值的最大值為;(3)S△PBA=3.【解題分析】

(3)通過一次函數(shù)解析式確定A、B兩點坐標,直接利用待定系數(shù)法求解即可得到b,c的值,令y=4便可得C點坐標.

(2)分別過P、Q兩點向x軸作垂線,通過PQ與OQ的比值為y以及平行線分線段成比例,找到,設點P坐標為(m,-m2+m+2),Q點坐標(n,-n+2),表示出ED、OD等長度即可得y與m、n之間的關系,再次利用即可求解.

(3)求得P點坐標,利用圖形割補法求解即可.【題目詳解】(3)∵直線y=﹣x+2與x軸交于點A,與y軸交于點B.∴A(2,4),B(4,2).又∵拋物線過B(4,2)∴c=2.把A(2,4)代入y=﹣x2+bx+2得,4=﹣×22+2b+2,解得,b=3.∴拋物線解析式為,y=﹣x2+x+2.令﹣x2+x+2=4,解得,x=﹣2或x=2.∴C(﹣2,4).(2)如圖3,分別過P、Q作PE、QD垂直于x軸交x軸于點E、D.設P(m,﹣m2+m+2),Q(n,﹣n+2),則PE=﹣m2+m+2,QD=﹣n+2.又∵=y(tǒng).∴n=.又∵,即把n=代入上式得,整理得,2y=﹣m2+2m.∴y=﹣m2+m.ymax=.即PQ與OQ的比值的最大值為.(3)如圖2,∵∠OBA=∠OBP+∠PBA=25°∠PBA+∠CBO=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論