2024屆上海市晉元高中高三上數(shù)學(xué)期末聯(lián)考試題含解析_第1頁
2024屆上海市晉元高中高三上數(shù)學(xué)期末聯(lián)考試題含解析_第2頁
2024屆上海市晉元高中高三上數(shù)學(xué)期末聯(lián)考試題含解析_第3頁
2024屆上海市晉元高中高三上數(shù)學(xué)期末聯(lián)考試題含解析_第4頁
2024屆上海市晉元高中高三上數(shù)學(xué)期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆上海市晉元高中高三上數(shù)學(xué)期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某學(xué)校調(diào)查了200名學(xué)生每周的自習(xí)時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習(xí)時間的范圍是17.5,30],樣本數(shù)據(jù)分組為17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時間不少于22.5小時的人數(shù)是()A.56 B.60 C.140 D.1202.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.3.設(shè)為銳角,若,則的值為()A. B. C. D.4.如果直線與圓相交,則點與圓C的位置關(guān)系是()A.點M在圓C上 B.點M在圓C外C.點M在圓C內(nèi) D.上述三種情況都有可能5.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.46.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:7.已知函數(shù),若,則的取值范圍是()A. B. C. D.8.在各項均為正數(shù)的等比數(shù)列中,若,則()A. B.6 C.4 D.59.設(shè),則復(fù)數(shù)的模等于()A. B. C. D.10.曲線在點處的切線方程為()A. B. C. D.11.已知函數(shù)(),若函數(shù)有三個零點,則的取值范圍是()A. B.C. D.12.,則與位置關(guān)系是()A.平行 B.異面C.相交 D.平行或異面或相交二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當(dāng)為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)14.已知正方體ABCD-A1B1C1D1棱長為2,點P是上底面15.如圖,在長方體中,,E,F(xiàn),G分別為的中點,點P在平面ABCD內(nèi),若直線平面EFG,則線段長度的最小值是________________.16.函數(shù)在處的切線方程是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的上頂點為,圓與軸的正半軸交于點,與有且僅有兩個交點且都在軸上,(為坐標(biāo)原點).(1)求橢圓的方程;(2)已知點,不過點且斜率為的直線與橢圓交于兩點,證明:直線與直線的斜率互為相反數(shù).18.(12分)在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心為(2,),半徑為1的圓.(1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;(2)設(shè)M為曲線C1上的點,N為曲線C2上的點,求|MN|的取值范圍.19.(12分)已知六面體如圖所示,平面,,,,,,是棱上的點,且滿足.(1)求證:直線平面;(2)求二面角的正弦值.20.(12分)已知橢圓的焦距是,點是橢圓上一動點,點是橢圓上關(guān)于原點對稱的兩點(與不同),若直線的斜率之積為.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)是拋物線上兩點,且處的切線相互垂直,直線與橢圓相交于兩點,求的面積的最大值.21.(12分)已知數(shù)列,滿足.(1)求數(shù)列,的通項公式;(2)分別求數(shù)列,的前項和,.22.(10分)市民小張計劃貸款60萬元用于購買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當(dāng)天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張該筆貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個還款月應(yīng)還4900元,最后一個還款月應(yīng)還2510元,試計算小張該筆貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張該筆貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經(jīng)濟利益的角度來考慮,小張應(yīng)選擇哪種還款方式.參考數(shù)據(jù):.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

試題分析:由題意得,自習(xí)時間不少于小時的頻率為,故自習(xí)時間不少于小時的頻率為,故選C.考點:頻率分布直方圖及其應(yīng)用.2、A【解析】

先利用最高點縱坐標(biāo)求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點法作圖求解.屬于中檔題.3、D【解析】

用誘導(dǎo)公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導(dǎo)公式、余弦的二倍角公式,解題關(guān)鍵是找出已知角和未知角之間的聯(lián)系.4、B【解析】

根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點到圓的圓心的距離大于半徑.即點與圓的位置關(guān)系是點在圓外.故選:【點睛】本題主要考查直線與圓相交的性質(zhì),考查點到直線距離公式的應(yīng)用,屬于中檔題.5、A【解析】

由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題6、C【解析】

根據(jù)向量的數(shù)量積運算,由向量的關(guān)系,可得選項.【詳解】,,∴等價于,故選:C.【點睛】本題考查向量的數(shù)量積運算和命題的充分、必要條件,屬于基礎(chǔ)題.7、B【解析】

對分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數(shù),由得或解得.故選:B.【點睛】本題考查利用分段函數(shù)性質(zhì)解不等式,屬于基礎(chǔ)題.8、D【解析】

由對數(shù)運算法則和等比數(shù)列的性質(zhì)計算.【詳解】由題意.故選:D.【點睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則.掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.9、C【解析】

利用復(fù)數(shù)的除法運算法則進行化簡,再由復(fù)數(shù)模的定義求解即可.【詳解】因為,所以,由復(fù)數(shù)模的定義知,.故選:C【點睛】本題考查復(fù)數(shù)的除法運算法則和復(fù)數(shù)的模;考查運算求解能力;屬于基礎(chǔ)題.10、A【解析】

將點代入解析式確定參數(shù)值,結(jié)合導(dǎo)數(shù)的幾何意義求得切線斜率,即可由點斜式求的切線方程.【詳解】曲線,即,當(dāng)時,代入可得,所以切點坐標(biāo)為,求得導(dǎo)函數(shù)可得,由導(dǎo)數(shù)幾何意義可知,由點斜式可得切線方程為,即,故選:A.【點睛】本題考查了導(dǎo)數(shù)的幾何意義,在曲線上一點的切線方程求法,屬于基礎(chǔ)題.11、A【解析】

分段求解函數(shù)零點,數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個零點,等價于與有三個交點,又因為,且由圖可知,當(dāng)時與有兩個交點,故只需當(dāng)時,與有一個交點即可.若當(dāng)時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點睛】本題考查由函數(shù)零點的個數(shù)求參數(shù)范圍,屬中檔題.12、D【解析】結(jié)合圖(1),(2),(3)所示的情況,可得a與b的關(guān)系分別是平行、異面或相交.選D.二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】

①∵,∴平面

,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當(dāng)為中點時,以點D為坐標(biāo)原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),根據(jù)對稱性和兩點之間線段最短,可求得當(dāng)點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面

,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;

②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當(dāng)為中點時,以點D為坐標(biāo)原點,建立空間直角系,如下圖所示,設(shè)正方體的棱長為2.則:,,所以,設(shè)面的法向量為,則,即,令,則,設(shè)面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),則,所以,當(dāng)點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設(shè)點的坐標(biāo)為,,,所以,所以,又所以,所以,,,故④正確.

故答案為:①②④.【點睛】本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.14、π.【解析】

設(shè)三棱錐P-ABC的外接球為球O',分別取AC、A1C1的中點O、O1,先確定球心O'在線段AC和A1C1中點的連線上,先求出球O【詳解】如圖所示,設(shè)三棱錐P-ABC的外接球為球O'分別取AC、A1C1的中點O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設(shè)球O的半徑為R,則4πR2=所以,OO則O而點P在上底面A1B1由于O'P=R=41因此,點P所構(gòu)成的圖形的面積為π×O【點睛】本題考查三棱錐的外接球的相關(guān)問題,根據(jù)立體幾何中的線段關(guān)系求動點的軌跡,屬于中檔題.15、【解析】

如圖,連接,證明平面平面EFG.因為直線平面EFG,所以點P在直線AC上.當(dāng)時.線段的長度最小,再求此時的得解.【詳解】如圖,連接,因為E,F(xiàn),G分別為AB,BC,的中點,所以,平面,則平面.因為,所以同理得平面,又.所以平面平面EFG.因為直線平面EFG,所以點P在直線AC上.在中,,故當(dāng)時.線段的長度最小,最小值為.故答案為:【點睛】本題主要考查空間位置關(guān)系的證明,考查立體幾何中的軌跡問題,意在考查學(xué)生對這些知識的理解掌握水平.16、【解析】

求出和的值,利用點斜式可得出所求切線的方程.【詳解】,則,,.因此,函數(shù)在處的切線方程是,即.故答案為:.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程,考查計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】

(1)根據(jù)條件可得,進而得到,即可得到橢圓方程;(2)設(shè)直線的方程為,聯(lián)立,分別表示出直線和直線斜率,相加利用根與系數(shù)關(guān)系即可得到.【詳解】解:(1)圓與有且僅有兩個交點且都在軸上,所以,又,,解得,故橢圓的方程為;(2)設(shè)直線的方程為,聯(lián)立,整理可得,則,解得,設(shè)點,,則,,所以,故直線與直線的斜率互為相反數(shù).【點睛】本題考查直線與橢圓的位置關(guān)系,涉及橢圓的幾何性質(zhì),關(guān)鍵是求出橢圓的標(biāo)準(zhǔn)方程,屬于中檔題.18、(1)C1:y2=1,C2:x2+(y﹣2)2=1;(2)[0,1]【解析】

(Ⅰ)消去參數(shù)φ可得C1的直角坐標(biāo)方程,易得曲線C2的圓心的直角坐標(biāo)為(0,2),可得C2的直角坐標(biāo)方程;(Ⅱ)設(shè)M(3cosφ,sinφ),由三角函數(shù)和二次函數(shù)可得|MC2|的取值范圍,結(jié)合圓的知識可得答案.【詳解】(1)消去參數(shù)φ可得C1的普通方程為y2=1,∵曲線C2是圓心為(2,),半徑為1的圓,曲線C2的圓心的直角坐標(biāo)為(0,2),∴C2的直角坐標(biāo)方程為x2+(y﹣2)2=1;(2)設(shè)M(3cosφ,sinφ),則|MC2|,∵﹣1≤sinφ≤1,∴1≤|MC2|,由題意結(jié)合圖象可得|MN|的最小值為1﹣1=0,最大值為1,∴|MN|的取值范圍為[0,1].【點睛】本題考查橢圓的參數(shù)方程,涉及圓的知識和極坐標(biāo)方程,屬中檔題.19、(1)證明見解析(2)【解析】

(1)連接,設(shè),連接.通過證明,證得直線平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計算出二面角的正弦值.【詳解】(1)連接,設(shè),連接,因為,所以,所以,在中,因為,所以,且平面,故平面.(2)因為,,,,,所以,因為,平面,所以平面,所以,,取所在直線為軸,取所在直線為軸,取所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,由已知可得,,,,所以,因為,所以,所以點的坐標(biāo)為,所以,,設(shè)為平面的法向量,則,令,解得,,所以,即為平面的一個法向量.,同理可求得平面的一個法向量為所以所以二面角的正弦值為【點睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)設(shè)點的坐標(biāo),表達出直線的斜率之積,再根據(jù)三點均在橢圓上,根據(jù)橢圓的方程代入斜率之積的表達式列式求解即可.(Ⅱ)設(shè)直線的方程為,根據(jù)直線的斜率之積為可得,再聯(lián)立直線與橢圓的方程,表達出面積公式,再換元利用基本不等式求解即可.【詳解】(Ⅰ)設(shè),,則,又,,故,即,故,又,故.故橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)設(shè)直線的方程為,,由,故,又,故,因為處的切線相互垂直故.故直線的方程為.聯(lián)立故.故,代入韋達定理有設(shè),則.當(dāng)且僅當(dāng)時取等號.故的面積的最大值為.【點睛】本題主要考查了根據(jù)橢圓上的點坐標(biāo)滿足的關(guān)系式求解橢圓基本量求方程的方法,同時也考查了拋物線的切線問題以及橢圓中面積的最值問題,需要根據(jù)導(dǎo)數(shù)的幾何意義求切線斜率,再換元利用基本不等式求解.屬于難題.21、(1)(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論