版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆浙江省鎮(zhèn)海市鎮(zhèn)海中學(xué)高三下學(xué)期5月熱身數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是等差數(shù)列的前項和,若,設(shè),則數(shù)列的前項和取最大值時的值為()A.2020 B.20l9 C.2018 D.20172.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關(guān)系(用不等號連接)為()A. B.C. D.3.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1474.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.5.已知實數(shù),則下列說法正確的是()A. B.C. D.6.已知函數(shù)的圖像上有且僅有四個不同的關(guān)于直線對稱的點在的圖像上,則的取值范圍是()A. B. C. D.7.已知角的頂點為坐標(biāo)原點,始邊與軸的非負(fù)半軸重合,終邊上有一點,則().A. B. C. D.8.設(shè)函數(shù),若在上有且僅有5個零點,則的取值范圍為()A. B. C. D.9.設(shè)正項等差數(shù)列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.3610.從拋物線上一點(點在軸上方)引拋物線準(zhǔn)線的垂線,垂足為,且,設(shè)拋物線的焦點為,則直線的斜率為()A. B. C. D.11.若復(fù)數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.412.設(shè),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等差數(shù)列()中,若,,則的值是______.14.展開式中的系數(shù)的和大于8而小于32,則______.15.已知向量,,若,則________.16.已知點是拋物線的準(zhǔn)線上一點,F(xiàn)為拋物線的焦點,P為拋物線上的點,且,若雙曲線C中心在原點,F(xiàn)是它的一個焦點,且過P點,當(dāng)m取最小值時,雙曲線C的離心率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.18.(12分)設(shè)函數(shù),,(Ⅰ)求曲線在點(1,0)處的切線方程;(Ⅱ)求函數(shù)在區(qū)間上的取值范圍.19.(12分)已知的三個內(nèi)角所對的邊分別為,向量,,且.(1)求角的大??;(2)若,求的值20.(12分)如圖,已知橢圓的右焦點為,,為橢圓上的兩個動點,周長的最大值為8.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)直線經(jīng)過,交橢圓于點,,直線與直線的傾斜角互補,且交橢圓于點,,,求證:直線與直線的交點在定直線上.21.(12分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.22.(10分)在中,.(Ⅰ)求角的大小;(Ⅱ)若,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
根據(jù)題意計算,,,計算,,,得到答案.【題目詳解】是等差數(shù)列的前項和,若,故,,,,故,當(dāng)時,,,,,當(dāng)時,,故前項和最大.故選:.【題目點撥】本題考查了數(shù)列和的最值問題,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.2、A【解題分析】因為,所以,即周期為4,因為為奇函數(shù),所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調(diào)遞增,因為,因此,選A.點睛:函數(shù)對稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關(guān)于原點對稱);(2)函數(shù)關(guān)于點對稱,函數(shù)關(guān)于直線對稱,(3)函數(shù)周期為T,則3、B【解題分析】
結(jié)合隨機模擬概念和幾何概型公式計算即可【題目詳解】如圖,由幾何概型公式可知:.故選:B【題目點撥】本題考查隨機模擬的概念和幾何概型,屬于基礎(chǔ)題4、C【解題分析】
根據(jù)表示圓和直線與圓有公共點,得到,再利用二次函數(shù)的性質(zhì)求解.【題目詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【題目點撥】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運算求解的能力,屬于中檔題.5、C【解題分析】
利用不等式性質(zhì)可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【題目詳解】解:對于實數(shù),,不成立對于不成立.對于.利用對數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出.對于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立.故選:.【題目點撥】利用不等式性質(zhì)比較大?。⒁獠坏仁叫再|(zhì)成立的前提條件.解決此類問題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗證的方法.6、D【解題分析】
根據(jù)對稱關(guān)系可將問題轉(zhuǎn)化為與有且僅有四個不同的交點;利用導(dǎo)數(shù)研究的單調(diào)性從而得到的圖象;由直線恒過定點,通過數(shù)形結(jié)合的方式可確定;利用過某一點曲線切線斜率的求解方法可求得和,進而得到結(jié)果.【題目詳解】關(guān)于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點由可知,直線恒過點當(dāng)時,在上單調(diào)遞減;在上單調(diào)遞增由此可得圖象如下圖所示:其中、為過點的曲線的兩條切線,切點分別為由圖象可知,當(dāng)時,與有且僅有四個不同的交點設(shè),,則,解得:設(shè),,則,解得:,則本題正確選項:【題目點撥】本題考查根據(jù)直線與曲線交點個數(shù)確定參數(shù)范圍的問題;涉及到過某一點的曲線切線斜率的求解問題;解題關(guān)鍵是能夠通過對稱性將問題轉(zhuǎn)化為直線與曲線交點個數(shù)的問題,通過確定直線恒過的定點,采用數(shù)形結(jié)合的方式來進行求解.7、B【解題分析】
根據(jù)角終邊上的點坐標(biāo),求得,代入二倍角公式即可求得的值.【題目詳解】因為終邊上有一點,所以,故選:B【題目點撥】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.8、A【解題分析】
由求出范圍,結(jié)合正弦函數(shù)的圖象零點特征,建立不等量關(guān)系,即可求解.【題目詳解】當(dāng)時,,∵在上有且僅有5個零點,∴,∴.故選:A.【題目點撥】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.9、B【解題分析】
方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設(shè),則,,則,當(dāng)且僅當(dāng)時等號成立,從而的最小值為16,故選B.方法二:設(shè)正項等差數(shù)列的公差為d,由等差數(shù)列的前項和公式及,化簡可得,即,則,當(dāng)且僅當(dāng),即時等號成立,從而的最小值為16,故選B.10、A【解題分析】
根據(jù)拋物線的性質(zhì)求出點坐標(biāo)和焦點坐標(biāo),進而求出點的坐標(biāo),代入斜率公式即可求解.【題目詳解】設(shè)點的坐標(biāo)為,由題意知,焦點,準(zhǔn)線方程,所以,解得,把點代入拋物線方程可得,,因為,所以,所以點坐標(biāo)為,代入斜率公式可得,.故選:A【題目點撥】本題考查拋物線的性質(zhì),考查運算求解能力;屬于基礎(chǔ)題.11、B【解題分析】
根據(jù)復(fù)數(shù)的幾何意義可知復(fù)數(shù)對應(yīng)的點在以原點為圓心,1為半徑的圓上,再根據(jù)復(fù)數(shù)的幾何意義即可確定,即可得的最大值.【題目詳解】由知,復(fù)數(shù)對應(yīng)的點在以原點為圓心,1為半徑的圓上,表示復(fù)數(shù)對應(yīng)的點與點間的距離,又復(fù)數(shù)對應(yīng)的點所在圓的圓心到的距離為1,所以.故選:B【題目點撥】本題考查了復(fù)數(shù)模的定義及其幾何意義應(yīng)用,屬于基礎(chǔ)題.12、D【解題分析】
結(jié)合指數(shù)函數(shù)及對數(shù)函數(shù)的單調(diào)性,可判斷出,,,即可選出答案.【題目詳解】由,即,又,即,,即,所以.故選:D.【題目點撥】本題考查了幾個數(shù)的大小比較,考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-15【解題分析】
是等差數(shù)列,則有,可得的值,再由可得,計算即得.【題目詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:【題目點撥】本題考查等差數(shù)列的性質(zhì),也可以由已知條件求出和公差,再計算.14、4【解題分析】
由題意可得項的系數(shù)與二項式系數(shù)是相等的,利用題意,得出不等式組,求得結(jié)果.【題目詳解】觀察式子可知,,故答案為:4.【題目點撥】該題考查的是有關(guān)二項式定理的問題,涉及到的知識點有展開式中項的系數(shù)和,屬于基礎(chǔ)題目.15、10【解題分析】
根據(jù)垂直得到,代入計算得到答案.【題目詳解】,則,解得,故,故.故答案為:.【題目點撥】本題考查了根據(jù)向量垂直求參數(shù),向量模,意在考查學(xué)生的計算能力.16、【解題分析】
由點坐標(biāo)可確定拋物線方程,由此得到坐標(biāo)和準(zhǔn)線方程;過作準(zhǔn)線的垂線,垂足為,根據(jù)拋物線定義可得,可知當(dāng)直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點坐標(biāo),根據(jù)雙曲線定義得到實軸長,結(jié)合焦距可求得所求的離心率.【題目詳解】是拋物線準(zhǔn)線上的一點拋物線方程為,準(zhǔn)線方程為過作準(zhǔn)線的垂線,垂足為,則設(shè)直線的傾斜角為,則當(dāng)取得最小值時,最小,此時直線與拋物線相切設(shè)直線的方程為,代入得:,解得:或雙曲線的實軸長為,焦距為雙曲線的離心率故答案為:【題目點撥】本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標(biāo)準(zhǔn)方程的應(yīng)用、雙曲線定義的應(yīng)用;關(guān)鍵是能夠確定當(dāng)取得最小值時,直線與拋物線相切,進而根據(jù)拋物線切線方程的求解方法求得點坐標(biāo).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
(1)先證得,設(shè)與交于點,在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計算出二面角的余弦值.【題目詳解】(1)由題意,,設(shè)與交于點,在中,可求得,則,可求得,則(2)以為原點,方向為軸,方向為軸,方向為軸,建立空間直角坐標(biāo)系.,,,,,易得平面的法向量為.,,易得平面的法向量為.設(shè)二面角為,由圖可知為銳角,所以.即二面角的余弦值為.【題目點撥】本小題主要考查根據(jù)線面垂直求邊長,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)(2)【解題分析】分析:(1)先斷定在曲線上,從而需要求,令,求得結(jié)果,注意復(fù)合函數(shù)求導(dǎo)法則,接著應(yīng)用點斜式寫出直線的方程;(2)先將函數(shù)解析式求出,之后借助于導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得函數(shù)在相應(yīng)區(qū)間上的最值.詳解:(Ⅰ)當(dāng),.,當(dāng),,所以切線方程為.(Ⅱ),,因為,所以.令,,則在單調(diào)遞減,因為,所以在上增,在單調(diào)遞增.,,因為,所以在區(qū)間上的值域為.點睛:該題考查的是有關(guān)應(yīng)用導(dǎo)數(shù)研究函數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義,曲線在某個點處的切線方程的求法,復(fù)合函數(shù)求導(dǎo),函數(shù)在給定區(qū)間上的最值等,在解題的過程中,需要對公式的正確使用.19、(1)(2)【解題分析】
利用平面向量數(shù)量積的坐標(biāo)表示和二倍角的余弦公式得到關(guān)于的方程,解方程即可求解;由知,在中利用余弦定理得到關(guān)于的方程,與方程聯(lián)立求出,進而求出,利用兩角差的正弦公式求解即可.【題目詳解】由題意得,,由二倍角的余弦公式可得,,又因為,所以,解得或,∵,∴.在中,由余弦定理得,即①又因為,把代入①整理得,,解得,,所以為等邊三角形,,∴,即.【題目點撥】本題考查利用平面向量數(shù)量積的坐標(biāo)表示和余弦定理及二倍角的余弦公式解三角形;熟練掌握余弦的二倍角公式和余弦定理是求解本題的關(guān)鍵;屬于中檔題、??碱}型.20、(Ⅰ);(Ⅱ)詳見解析.【解題分析】
(Ⅰ)由橢圓的定義可得,周長取最大值時,線段過點,可求出,從而求出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達(dá)定理和弦長公式求出和,根據(jù)求出的值.最后直線與直線的方程聯(lián)立,求兩直線的交點即得結(jié)論.【題目詳解】(Ⅰ)設(shè)的周長為,則,當(dāng)且僅當(dāng)線段過點時“”成立.,,又,,橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點矛盾,所以直線的斜率存在.設(shè),,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時.直線,聯(lián)立直線與直線的方程得,即點在定直線.【題目點撥】本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查學(xué)生的邏輯推理能力和運算能力,屬于難題.21、(1);(2)4【解題分析】
(1)根據(jù)已知用二倍角余弦求出,進而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結(jié)合基
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中共臨海市委宣傳部下屬事業(yè)單位公開選聘工作人員1人備考題庫附答案
- 2025年12月昆明五華保安服務(wù)有限公司招聘(1人)考試備考題庫附答案
- 2025年菏澤市第六人民醫(yī)院公開招聘合同制工作人員筆試(公共基礎(chǔ)知識)測試題附答案
- 2025年合肥市醫(yī)療器械檢驗檢測中心有限公司社會招聘18人模擬試卷附答案
- 2025廣東江門臺山市水步鎮(zhèn)荔枝塘村招聘后備干部1人備考題庫附答案
- 2025年鼓樓區(qū)鼓東街道營商環(huán)境辦(樓宇)公開招聘工作人員備考題庫附答案
- 2025廣東惠州市公安局惠城分局輔警招聘59人備考題庫(第六批)附答案
- 中冶交通2026屆校園招聘筆試備考題庫及答案解析
- 2026重慶萬州區(qū)長灘鎮(zhèn)非全日制公益性崗位工作人員招聘1人筆試備考題庫及答案解析
- 2026福建莆田市城廂區(qū)國信產(chǎn)業(yè)投資有限公司招聘5人筆試備考題庫及答案解析
- 2025年安吉縣輔警招聘考試真題匯編附答案
- 貨運代理公司操作總監(jiān)年度工作匯報
- 世說新語課件
- 物業(yè)管理條例實施細(xì)則全文
- 電化學(xué)儲能技術(shù)發(fā)展與多元應(yīng)用
- 2026年安全員之C證(專職安全員)考試題庫500道及完整答案【奪冠系列】
- 掩體構(gòu)筑與偽裝課件
- 2026年包頭鐵道職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試題庫帶答案詳解
- GB/T 23446-2025噴涂聚脲防水涂料
- 2026年(馬年)學(xué)校慶元旦活動方案:駿馬踏春啟新程多彩活動慶元旦
- 消防箱生產(chǎn)工藝流程
評論
0/150
提交評論