海南省海口市湖南師大附中??谥袑W2024年數(shù)學高三第一學期期末質量檢測試題含解析_第1頁
海南省??谑泻蠋煷蟾街泻?谥袑W2024年數(shù)學高三第一學期期末質量檢測試題含解析_第2頁
海南省海口市湖南師大附中??谥袑W2024年數(shù)學高三第一學期期末質量檢測試題含解析_第3頁
海南省海口市湖南師大附中??谥袑W2024年數(shù)學高三第一學期期末質量檢測試題含解析_第4頁
海南省??谑泻蠋煷蟾街泻?谥袑W2024年數(shù)學高三第一學期期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

海南省??谑泻蠋煷蟾街泻?谥袑W2024年數(shù)學高三第一學期期末質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機取一重卦,則該重卦至少有2個陽爻的概率是()A. B. C. D.2.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或3.已知復數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復數(shù)在復平面內對應的點位于第三象限C.的共軛復數(shù) D.4.若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.45.已知函數(shù),,若對任意的,存在實數(shù)滿足,使得,則的最大值是()A.3 B.2 C.4 D.56.我國古代數(shù)學著作《九章算術》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1007.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.8.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.9.已知集合A={x|x<1},B={x|},則A. B.C. D.10.已知復數(shù)是正實數(shù),則實數(shù)的值為()A. B. C. D.11.將函數(shù)圖象向右平移個單位長度后,得到函數(shù)的圖象關于直線對稱,則函數(shù)在上的值域是()A. B. C. D.12.雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線在點處的切線方程是_______.14.如圖,在△ABC中,E為邊AC上一點,且,P為BE上一點,且滿足,則的最小值為______.15.在正奇數(shù)非減數(shù)列中,每個正奇數(shù)出現(xiàn)次.已知存在整數(shù)、、,對所有的整數(shù)滿足,其中表示不超過的最大整數(shù).則等于______.16.函數(shù)過定點________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓的右焦點為,過的直線與交于兩點,點的坐標為.(1)當直線的傾斜角為時,求線段AB的中點的橫坐標;(2)設點A關于軸的對稱點為C,求證:M,B,C三點共線;(3)設過點M的直線交橢圓于兩點,若橢圓上存在點P,使得(其中O為坐標原點),求實數(shù)的取值范圍.18.(12分)某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應開鑿的直線穿山隧道,為進一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標系,如圖所示,山區(qū)邊界曲線為,設公路與曲線相切于點,的橫坐標為.(1)當為何值時,公路的長度最短?求出最短長度;(2)當公路的長度最短時,設公路交軸,軸分別為,兩點,并測得四邊形中,,,千米,千米,求應開鑿的隧道的長度.19.(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點的個數(shù);(2)記函數(shù)在區(qū)間上的兩個極值點分別為、,求證:.20.(12分)已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.21.(12分)某商場為改進服務質量,在進場購物的顧客中隨機抽取了人進行問卷調查.調查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男女是否有的把握認為顧客購物體驗的滿意度與性別有關?若在購物體驗滿意的問卷顧客中按照性別分層抽取了人發(fā)放價值元的購物券.若在獲得了元購物券的人中隨機抽取人贈其紀念品,求獲得紀念品的人中僅有人是女顧客的概率.附表及公式:.22.(10分)改革開放年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強.求的值,并估計該城市駕駛員交通安全意識強的概率;已知交通安全意識強的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關;安全意識強安全意識不強合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內的交通違章情況進行跟蹤調查,求至少有人得分低于分的概率.附:其中

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

利用組合的方法求所求的事件的對立事件,即該重卦沒有陽爻或只有1個陽爻的概率,再根據(jù)兩對立事件的概率和為1求解即可.【詳解】設“該重卦至少有2個陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個陽爻”的對立事件是“該重卦沒有陽爻或只有1個陽爻”,其中,沒有陽爻(即6個全部是陰爻)的情況有1種,只有1個陽爻的情況有種,故,所以該重卦至少有2個陽爻的概率是.故選:C【點睛】本題主要考查了對立事件概率和為1的方法求解事件概率的方法.屬于基礎題.2、D【解析】

根據(jù)正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點睛】本題考查了正弦定理解三角形,意在考查學生的計算能力.3、D【解析】

利用的周期性先將復數(shù)化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內對應的點為,在第二象限,B錯誤;的共軛復數(shù)為,C錯誤;,D正確.故選:D.【點睛】本題考查復數(shù)的四則運算,涉及到復數(shù)的虛部、共軛復數(shù)、復數(shù)的幾何意義、復數(shù)的模等知識,是一道基礎題.4、C【解析】

由二項式系數(shù)性質,的展開式中所有二項式系數(shù)和為計算.【詳解】的二項展開式中二項式系數(shù)和為,.故選:C.【點睛】本題考查二項式系數(shù)的性質,掌握二項式系數(shù)性質是解題關鍵.5、A【解析】

根據(jù)條件將問題轉化為,對于恒成立,然后構造函數(shù),然后求出的范圍,進一步得到的最大值.【詳解】,,對任意的,存在實數(shù)滿足,使得,易得,即恒成立,,對于恒成立,設,則,令,在恒成立,,故存在,使得,即,當時,,單調遞減;當時,,單調遞增.,將代入得:,,且,故選:A【點睛】本題考查了利用導數(shù)研究函數(shù)的單調性,零點存在定理和不等式恒成立問題,考查了轉化思想,屬于難題.6、B【解析】

根據(jù)程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.【點睛】本題考查程序框圖,讀懂程序的功能是解題關鍵.7、B【解析】

還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.8、B【解析】

每個式子的值依次構成一個數(shù)列,然后歸納出數(shù)列的遞推關系后再計算.【詳解】以及數(shù)列的應用根據(jù)題設條件,設數(shù)字,,,,,,,構成一個數(shù)列,可得數(shù)列滿足,則,,.故選:B.【點睛】本題主要考查歸納推理,解題關鍵是通過數(shù)列的項歸納出遞推關系,從而可確定數(shù)列的一些項.9、A【解析】∵集合∴∵集合∴,故選A10、C【解析】

將復數(shù)化成標準形式,由題意可得實部大于零,虛部等于零,即可得到答案.【詳解】因為為正實數(shù),所以且,解得.故選:C【點睛】本題考查復數(shù)的基本定義,屬基礎題.11、D【解析】

由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,求得結果.【詳解】解:把函數(shù)圖象向右平移個單位長度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關于直線對稱,,,,函數(shù).在上,,,故,即的值域是,故選:D.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,屬于中檔題.12、A【解析】

將雙曲線方程化為標準方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點睛】本題主要考查了雙曲線的標準方程,雙曲線的簡單性質的應用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求導,x=0代入求k,點斜式求切線方程即可【詳解】則又故切線方程為y=x+1故答案為y=x+1【點睛】本題考查切線方程,求導法則及運算,考查直線方程,考查計算能力,是基礎題14、【解析】試題分析:根據(jù)題意有,因為三點共線,所以有,從而有,所以的最小值是.考點:向量的運算,基本不等式.【方法點睛】該題考查的是有關應用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關鍵步驟在于對題中條件的轉化,根據(jù)三點共線,結合向量的性質可知,從而等價于已知兩個正數(shù)的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應用基本不等式求得結果,最后再加,得出最后的答案.15、2【解析】

將已知數(shù)列分組為(1),,共個組.設在第組,,則有,即.注意到,解得.所以,.因此,.故.16、【解析】

令,,與參數(shù)無關,即可得到定點.【詳解】由指數(shù)函數(shù)的性質,可得,函數(shù)值與參數(shù)無關,所有過定點.故答案為:【點睛】此題考查函數(shù)的定點問題,關鍵在于找出自變量的取值使函數(shù)值與參數(shù)無關,熟記常見函數(shù)的定點可以節(jié)省解題時間.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)AB的中點的橫坐標為;(2)證明見解析;(3)【解析】

設.(1)因為直線的傾斜角為,,所以直線AB的方程為,聯(lián)立方程組,消去并整理,得,則,故線段AB的中點的橫坐標為.(2)根據(jù)題意得點,若直線AB的斜率為0,則直線AB的方程為,A、C兩點重合,顯然M,B,C三點共線;若直線AB的斜率不為0,設直線AB的方程為,聯(lián)立方程組,消去并整理得,則,設直線BM、CM的斜率分別為、,則,即=,即M,B,C三點共線.(3)根據(jù)題意,得直線GH的斜率存在,設該直線的方程為,設,聯(lián)立方程組,消去并整理,得,由,整理得,又,所以,結合,得,當時,該直線為軸,即,此時橢圓上任意一點P都滿足,此時符合題意;當時,由,得,代入橢圓C的方程,得,整理,得,再結合,得到,即,綜上,得到實數(shù)的取值范圍是.18、(1)當時,公路的長度最短為千米;(2)(千米).【解析】

(1)設切點的坐標為,利用導數(shù)的幾何意義求出切線的方程為,根據(jù)兩點間距離得出,構造函數(shù),利用導數(shù)求出單調性,從而得出極值和最值,即可得出結果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即可求出的長度.【詳解】(1)由題可知,設點的坐標為,又,則直線的方程為,由此得直線與坐標軸交點為:,則,故,設,則.令,解得=10.當時,是減函數(shù);當時,是增函數(shù).所以當時,函數(shù)有極小值,也是最小值,所以,此時.故當時,公路的長度最短,最短長度為千米.(2)在中,,,所以,所以,根據(jù)正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【點睛】本題考查利用導數(shù)解決實際的最值問題,涉及構造函數(shù)法以及利用導數(shù)研究函數(shù)單調性和極值,還考查正余弦定理的實際應用,還考查解題分析能力和計算能力.19、(1);(2)見解析.【解析】

(1)利用導數(shù)分析函數(shù)在區(qū)間上的單調性與極值,結合零點存在定理可得出結論;(2)設函數(shù)的極大值點和極小值點分別為、,由(1)知,,且滿足,,于是得出,由得,利用正切函數(shù)的單調性推導出,再利用正弦函數(shù)的單調性可得出結論.【詳解】(1),,,當時,,,,則函數(shù)在上單調遞增;當時,,,,則函數(shù)在上單調遞減;當時,,,,則函數(shù)在上單調遞增.,,,,.所以,函數(shù)在與不存在零點,在區(qū)間和上各存在一個零點.綜上所述,函數(shù)在區(qū)間上的零點的個數(shù)為;(2),.由(1)得,在區(qū)間與上存在零點,所以,函數(shù)在區(qū)間與上各存在一個極值點、,且,,且滿足即,,,又,即,,,,,由在上單調遞增,得,再由在上單調遞減,得,即.【點睛】本題考查利用導數(shù)研究函數(shù)的零點個數(shù)問題,同時也考查了利用導數(shù)證明不等式,考查分析問題和解決問題的能力,屬于難題.20、(1),;(2)【解析】試題分析:(1)利用等差數(shù)列,等比數(shù)列的通項公式先求得公差和公比,即得到結論;(2)利用分組求和法,由等差數(shù)列及等比數(shù)列的前n項和公式即可求得數(shù)列前n項和.試題解析:(Ⅰ)設等差數(shù)列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設等比數(shù)列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵數(shù)列{1n}的前n項和為n(n+1),數(shù)列{2n﹣1}的前n項和為1×=2n﹣1,∴數(shù)列{bn}的前n項和為;考點:1.等差數(shù)列性質的綜合應用;2.等比數(shù)列性質的綜合應用;1.數(shù)列求和.21、有的把握認為顧客購物體驗的滿意度與性別有關;.【解析】

由題得,根據(jù)數(shù)據(jù)判斷出顧客購物體驗的滿意度與性別有關;獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機抽取人,所有基本事件有個,其中僅有1人是女顧客的基本事件有個,進而求出獲得紀念品的人中僅有人是女顧客的概率.【詳解】解析:由題得所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論