版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
吉林省長春市第一五〇中學(xué)2024屆數(shù)學(xué)高一下期末考試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,若,則的面積為().A.8 B.2 C. D.42.已知函數(shù)在上是減函數(shù),則實(shí)數(shù)的取值范圍是()A. B. C. D.3.執(zhí)行下面的程序框圖,則輸出的的值為()A.10 B.34 C.36 D.1544.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一比值也可以表示為a=2cos72°,則=()A. B.1 C.2 D.5.設(shè),若不等式恒成立,則實(shí)數(shù)a的取值范圍是()A. B. C. D.6.的值等于()A. B.- C. D.-7.已知a,b為非零實(shí)數(shù),且,則下列不等式一定成立的是()A. B. C. D.8.化為弧度是A. B. C. D.9.?dāng)?shù)列滿足,則數(shù)列的前項(xiàng)和等于()A. B. C. D.10.用區(qū)間表示不超過的最大整數(shù),如,設(shè),若方程有且只有3個(gè)實(shí)數(shù)根,則正實(shí)數(shù)的取值范圍為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的定義域?yàn)開__________.12.等比數(shù)列中,若,,則______.13.一個(gè)扇形的半徑是,弧長是,則圓心角的弧度數(shù)為________.14.已知在數(shù)列中,且,若,則數(shù)列的前項(xiàng)和為__________.15.某校老年、中年和青年教師的人數(shù)分別為90,180,160,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有32人,則抽取的樣本中老年教師的人數(shù)為_____16.設(shè)向量與向量共線,則實(shí)數(shù)等于__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,已知函數(shù),點(diǎn)分別是的圖像與軸、軸的交點(diǎn),分別是的圖像上橫坐標(biāo)為的兩點(diǎn),軸,共線.(1)求的值;(2)若關(guān)于的方程在區(qū)間上恰有唯一實(shí)根,求實(shí)數(shù)的取值范圍.18.如圖,求陰影部分繞旋轉(zhuǎn)一周所形成的幾何體的表面積和體積.19.已知數(shù)列的前項(xiàng)和為,滿足,,數(shù)列滿足,,且.(1)求數(shù)列的通項(xiàng)公式;(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項(xiàng)公式;(3)若,數(shù)列的前項(xiàng)和為,對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.20.已知函數(shù)(其中)的圖象如圖所示:(1)求函數(shù)的解析式及其對(duì)稱軸的方程;(2)當(dāng)時(shí),方程有兩個(gè)不等的實(shí)根,求實(shí)數(shù)的取值范圍,并求此時(shí)的值.21.已知向量,(1)若,求;(2)若,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】
由正弦定理結(jié)合已知,可以得到的關(guān)系,再根據(jù)余弦定理結(jié)合,可以求出的值,再利用三角形面積公式求出三角形的面積即可.【題目詳解】由正弦定理可知:,而,所以有,由余弦定理可知:,所以,因此的面積為,故本題選C.【題目點(diǎn)撥】本題考查了正弦定理、余弦定理、三角形面積公式,考查了數(shù)學(xué)運(yùn)算能力.2、C【解題分析】
根據(jù)復(fù)合函數(shù)單調(diào)性,結(jié)合對(duì)數(shù)型函數(shù)的定義域列不等式組,解不等式組求得的取值范圍.【題目詳解】由于的底數(shù)為,而函數(shù)在上是減函數(shù),根據(jù)復(fù)合函數(shù)單調(diào)性同增異減可知,結(jié)合對(duì)數(shù)型函數(shù)的定義域得,解得.故選:C【題目點(diǎn)撥】本小題主要考查根據(jù)對(duì)數(shù)型復(fù)合函數(shù)單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.3、B【解題分析】試題分析:第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):結(jié)束循環(huán),輸出,選B.考點(diǎn):循環(huán)結(jié)構(gòu)流程圖【名師點(diǎn)睛】算法與流程圖的考查,側(cè)重于對(duì)流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項(xiàng).4、A【解題分析】
根據(jù)已知利用同角三角函數(shù)基本關(guān)系式,二倍角公式、誘導(dǎo)公式化簡即可求值得解.【題目詳解】∵a=2cos72°,∴a2=4cos272°,可得:4﹣a2=4﹣4cos272°=4sin272°,∴2sin72°,a2cos72°?2sin72°=2sin144°=2sin36°,∴.故選:A.【題目點(diǎn)撥】本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角公式、誘導(dǎo)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.5、D【解題分析】
由題意可得恒成立,討論,,運(yùn)用基本不等式,可得最值,進(jìn)而得到所求范圍.【題目詳解】恒成立,即為恒成立,當(dāng)時(shí),可得的最小值,由,當(dāng)且僅當(dāng)取得最小值8,即有,則;當(dāng)時(shí),可得的最大值,由,當(dāng)且僅當(dāng)取得最大值,即有,則,綜上可得.故選.【題目點(diǎn)撥】本題主要考查不等式恒成立問題的解法,注意運(yùn)用參數(shù)分離和分類討論思想,以及基本不等式的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化思想、分類討論思想和運(yùn)算能力.6、C【解題分析】
利用誘導(dǎo)公式把化簡成.【題目詳解】【題目點(diǎn)撥】本題考查誘導(dǎo)公式的應(yīng)用,即把任意角的三角函數(shù)轉(zhuǎn)化成銳角三角函數(shù),考查基本運(yùn)算求解能力.7、C【解題分析】
,時(shí),、、不成立;利用作差比較,即可求出.【題目詳解】解:,時(shí),,,故、、不成立;,,.故選:.【題目點(diǎn)撥】本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.8、D【解題分析】
由于,則.【題目詳解】因?yàn)椋?,故選D.【題目點(diǎn)撥】本題考查角度制與弧度制的互化.9、A【解題分析】
當(dāng)為正奇數(shù)時(shí),可推出,當(dāng)為正偶數(shù)時(shí),可推出,將該數(shù)列的前項(xiàng)和表示為,結(jié)合前面的規(guī)律可計(jì)算出數(shù)列的前項(xiàng)和.【題目詳解】當(dāng)為正奇數(shù)時(shí),由題意可得,,兩式相減得;當(dāng)為正偶數(shù)時(shí),由題意可得,,兩式相加得.因此,數(shù)列的前項(xiàng)和為.故選:A.【題目點(diǎn)撥】本題考查數(shù)列求和,找出數(shù)列的規(guī)律是解題的關(guān)鍵,考查推理能力,屬于中等題.10、A【解題分析】
由方程的根與函數(shù)交點(diǎn)的個(gè)數(shù)問題,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想方法,作圖觀察y={x}的圖象與y=﹣kx+1的圖象有且只有3個(gè)交點(diǎn)時(shí)k的取值范圍,即可得解.【題目詳解】方程{x}+kx﹣1=0有且只有3個(gè)實(shí)數(shù)根等價(jià)于y={x}的圖象與y=﹣kx+1的圖象有且只有3個(gè)交點(diǎn),當(dāng)0≤x<1時(shí),{x}=x,當(dāng)1≤x<2時(shí),{x}=x﹣1,當(dāng)2≤x<3時(shí),{x}=x﹣2,當(dāng)3≤x<4時(shí),{x}=x﹣3,以此類推如上圖所示,實(shí)數(shù)k的取值范圍為:k,即實(shí)數(shù)k的取值范圍為:(,],故選A.【題目點(diǎn)撥】本題考查了方程的根與函數(shù)交點(diǎn)的個(gè)數(shù)問題,數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】試題分析:由題設(shè)可得,解之得,故應(yīng)填答案.考點(diǎn):函數(shù)定義域的求法及運(yùn)用.12、【解題分析】
設(shè)的首項(xiàng)為,公比為,根據(jù),列出方程組,求出和即可得解.【題目詳解】設(shè)的首項(xiàng)為,公比為,則:,解之得,所以:.故答案為:.【題目點(diǎn)撥】本題考查等比數(shù)列中某項(xiàng)的求法,解題關(guān)鍵是根據(jù)題意列出方程組,需要注意的是為了簡化運(yùn)算不用直接求解,解出即可,屬于基礎(chǔ)題.13、2【解題分析】
直接根據(jù)弧長公式,可得.【題目詳解】因?yàn)?,所以,解得【題目點(diǎn)撥】本題主要考查弧長公式的應(yīng)用.14、【解題分析】
根據(jù)遞推關(guān)系式可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項(xiàng)公式求得,得到,進(jìn)而求得;利用裂項(xiàng)相消法求得結(jié)果.【題目詳解】由得:數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,即:設(shè)前項(xiàng)和為本題正確結(jié)果:【題目點(diǎn)撥】本題考查根據(jù)遞推關(guān)系式證明數(shù)列為等差數(shù)列、等差數(shù)列通項(xiàng)的求解、裂項(xiàng)相消法求數(shù)列的前項(xiàng)和;關(guān)鍵是能夠通過通項(xiàng)公式的形式確定采用的求和方法,屬于常考題型.15、【解題分析】
根據(jù)分層抽樣的定義建立比例關(guān)系,即可得到答案?!绢}目詳解】設(shè)抽取的樣本中老年教師的人數(shù)為,學(xué)校所有的中老年教師人數(shù)為270人由分層抽樣的定義可知:,解得:故答案為【題目點(diǎn)撥】本題考查分層抽樣,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題。16、3【解題分析】
利用向量共線的坐標(biāo)公式,列式求解.【題目詳解】因?yàn)橄蛄颗c向量共線,所以,故答案為:3.【題目點(diǎn)撥】本題考查向量共線的坐標(biāo)公式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ),(Ⅱ)或【解題分析】試題分析:解:(Ⅰ)建立,.(Ⅱ),結(jié)合圖象可知或.試題解析:解:(Ⅰ)①②解得,.(Ⅱ),,因?yàn)闀r(shí),,由方程恰有唯一實(shí)根,結(jié)合圖象可知或.18、,【解題分析】
由圖形知旋轉(zhuǎn)后的幾何體是一個(gè)圓臺(tái),從上面挖去一個(gè)半球后剩余部分,根據(jù)圖形中的數(shù)據(jù)可求出其表面積和體積.【題目詳解】由題意知,所求旋轉(zhuǎn)體的表面積由三部分組成:圓臺(tái)下底面、側(cè)面和一個(gè)半球面,而半球面的表面積,圓臺(tái)的底面積,圓臺(tái)的側(cè)面積,所以所求幾何體的表面積;圓臺(tái)的體積,半球的體積,所以,旋轉(zhuǎn)體的體積為,故得解.【題目點(diǎn)撥】本題考查組合體的表面積、體積,還考查了空間想象能力,能想象出旋轉(zhuǎn)后的旋轉(zhuǎn)體的構(gòu)成是本題的關(guān)鍵,屬于中檔題.19、(1);(2)證明見解析,;(3)或.【解題分析】
(1)運(yùn)用數(shù)列的遞推式以及數(shù)列的和與通項(xiàng)的關(guān)系可得,再由等比數(shù)列的定義、通項(xiàng)公式可得結(jié)果;(2)對(duì)等式兩邊除以,結(jié)合等差數(shù)列的定義和通項(xiàng)公式,可得所求;(3)求得,由數(shù)列的錯(cuò)位相減法求和,可得,化簡,即,對(duì)任意的成立,運(yùn)用數(shù)列的單調(diào)性可得最大值,解不等式可得所求范圍.【題目詳解】(1),可得,即;時(shí),,又,相減可得,即,則;(2)證明:,可得,可得是首項(xiàng)和公差均為1的等差數(shù)列,可得,即;(3),前n項(xiàng)和為,,相減可得,可得,,即為,即,對(duì)任意的成立,由,可得為遞減數(shù)列,即n=1時(shí)取得最大值1?2=?1,可得,即或.【題目點(diǎn)撥】“錯(cuò)位相減法”求數(shù)列的和是重點(diǎn)也是難點(diǎn),利用“錯(cuò)位相減法”求數(shù)列的和應(yīng)注意以下幾點(diǎn):①掌握運(yùn)用“錯(cuò)位相減法”求數(shù)列的和的條件(一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的積);②相減時(shí)注意最后一項(xiàng)的符號(hào);③求和時(shí)注意項(xiàng)數(shù)別出錯(cuò);④最后結(jié)果一定不能忘記等式兩邊同時(shí)除以.20、(1),;(2),.【解題分析】
(1)根據(jù)圖像得A=2,利用,求ω值,再利用時(shí)取到最大值可求φ,從而得到函數(shù)解析式,進(jìn)而求得對(duì)稱軸方程;(2)由得,方程f(x)=2a﹣3有兩個(gè)不等實(shí)根轉(zhuǎn)為f(x)的圖象與直線y=2a﹣3有兩個(gè)不同的交點(diǎn),從而可求得a的取值范圍,利用圖像的性質(zhì)可得的值.【題目詳解】(1)由圖知,,解得ω=2,f(x)=2sin(2x+φ),當(dāng)時(shí),函數(shù)取得最大值,可得,即,,解得,又所以,故,令則,所以的對(duì)稱軸方程為;(2),所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GA 1408-2017 警帽 禮儀大檐帽》專題研究報(bào)告
- 《GA 758-2008 9mm警用轉(zhuǎn)輪手槍》專題研究報(bào)告
- 中學(xué)社團(tuán)指導(dǎo)教師職責(zé)制度
- 養(yǎng)老院入住老人遺物保管與處理制度
- 企業(yè)內(nèi)部培訓(xùn)與發(fā)展規(guī)劃制度
- 交通管制與疏導(dǎo)方案制度
- 2026湖北省定向重慶大學(xué)選調(diào)生招錄備考題庫附答案
- 2026湖南郴州莽山旅游開發(fā)有限責(zé)任公司面向社會(huì)招聘40人備考題庫附答案
- 2026福建泉州石獅市鳳里街道中心幼兒園春季招聘備考題庫附答案
- 2026西藏自治區(qū)定向選調(diào)生招錄(70人)參考題庫附答案
- 旅居養(yǎng)老可行性方案
- 燈謎大全及答案1000個(gè)
- 老年健康與醫(yī)養(yǎng)結(jié)合服務(wù)管理
- 中國焦慮障礙防治指南
- 1到六年級(jí)古詩全部打印
- 心包積液及心包填塞
- GB/T 40222-2021智能水電廠技術(shù)導(dǎo)則
- 兩片罐生產(chǎn)工藝流程XXXX1226
- 第十章-孤獨(dú)癥及其遺傳學(xué)研究課件
- 人教版四年級(jí)上冊(cè)語文期末試卷(完美版)
- 工藝管道儀表流程圖PID基礎(chǔ)知識(shí)入門級(jí)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論