2024屆遼寧省北鎮(zhèn)市中學(xué)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第1頁
2024屆遼寧省北鎮(zhèn)市中學(xué)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第2頁
2024屆遼寧省北鎮(zhèn)市中學(xué)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第3頁
2024屆遼寧省北鎮(zhèn)市中學(xué)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第4頁
2024屆遼寧省北鎮(zhèn)市中學(xué)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆遼寧省北鎮(zhèn)市中學(xué)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則()A.1 B.4C.2 D.2.在中,內(nèi)角、、所對(duì)的邊分別為、、,且,則下列關(guān)于的形狀的說法正確的是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定3.已知球的直徑SC=4,A,B是該球球面上的兩點(diǎn),AB=1.∠ASC=∠BSC=45°則棱錐S—ABC的體積為()A. B. C. D.4.《五曹算經(jīng)》是我國(guó)南北朝時(shí)期數(shù)學(xué)家甄鸞為各級(jí)政府的行政人員編撰的一部實(shí)用算術(shù)書.其第四卷第九題如下:“今有平地聚粟,下周三丈高四尺,問粟幾何?”其意思為“場(chǎng)院內(nèi)有圓錐形稻谷堆,底面周長(zhǎng)3丈,高4尺,那么這堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的體積約為1.62立方尺,圓周率約為3,估算出堆放的稻谷約有()A.57.08斜 B.171.24斛 C.61.73斛 D.185.19斛5.當(dāng)點(diǎn)到直線的距離最大時(shí),m的值為()A.3 B.0 C. D.16.下列平面圖形中,通過圍繞定直線旋轉(zhuǎn)可得到如圖所示幾何體的是()A. B. C. D.7.設(shè)為正數(shù),為的等差中項(xiàng),為的等比中項(xiàng),則與的大小關(guān)為()A. B. C. D.8.(卷號(hào))2397643038875648(題號(hào))2398229448728576(題文)已知直線、,平面、,給出下列命題:①若,,且,則;②若,,且,則;③若,,且,則;④若,,且,則.其中正確的命題是()A.①② B.③④ C.①④ D.②③9.已知數(shù)列滿足,,則()A.1024 B.2048 C.1023 D.204710.若,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,已知M是AB邊所在直線上一點(diǎn),滿足,則________.12.已知中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,,,則的面積為______;13.已知數(shù)列{an}的前n項(xiàng)和Sn=2n-3,則數(shù)列{an}的通項(xiàng)公式為________.14.若數(shù)列滿足,則_____.15.已知圓錐的底面半徑為3,體積是,則圓錐側(cè)面積等于___________.16.已知扇形的圓心角為,半徑為,則扇形的面積.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.為了研究某種藥物,用小白鼠進(jìn)行試驗(yàn),發(fā)現(xiàn)藥物在血液內(nèi)的濃度與時(shí)間的關(guān)系因使用方式的不同而不同.若使用注射方式給藥,則在注射后的3小時(shí)內(nèi),藥物在白鼠血液內(nèi)的濃度與時(shí)間t滿足關(guān)系式:,若使用口服方式給藥,則藥物在白鼠血液內(nèi)的濃度與時(shí)間t滿足關(guān)系式:現(xiàn)對(duì)小白鼠同時(shí)進(jìn)行注射和口服該種藥物,且注射藥物和口服藥物的吸收與代謝互不干擾.(1)若a=1,求3小時(shí)內(nèi),該小白鼠何時(shí)血液中藥物的濃度最高,并求出最大值?(2)若使小白鼠在用藥后3小時(shí)內(nèi)血液中的藥物濃度不低于4,求正數(shù)a的取值范圍.18.已知函數(shù)的最小正周期為,且直線是其圖象的一條對(duì)稱軸.(1)求函數(shù)的解析式;(2)在中,角、、所對(duì)的邊分別為、、,且,,若角滿足,求的取值范圍;(3)將函數(shù)的圖象向右平移個(gè)單位,再將所得的圖象上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來的倍后所得到的圖象對(duì)應(yīng)的函數(shù)記作,已知常數(shù),,且函數(shù)在內(nèi)恰有個(gè)零點(diǎn),求常數(shù)與的值.19.設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.20.在直三棱柱中,,,,分別是,的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.21.已知數(shù)列的前項(xiàng)和為,點(diǎn)在直線上.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),若數(shù)列的前項(xiàng)和為,求證:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】試題分析:由題意得,根據(jù)等比數(shù)列的性質(zhì)可知,又因?yàn)?,故選C.考點(diǎn):等比數(shù)列的性質(zhì).2、B【解題分析】

利用三角形的正、余弦定理判定.【題目詳解】在中,內(nèi)角、、所對(duì)的邊分別為、、,且,由正弦定理得,得,則,為直角三角形.故選B【題目點(diǎn)撥】本題考查了三角形正弦定理的應(yīng)用,屬于基礎(chǔ)題.3、C【解題分析】如圖所示,由題意知,在棱錐SABC中,△SAC,△SBC都是等腰直角三角形,其中AB=1,SC=4,SA=AC=SB=BC=1.取SC的中點(diǎn)D,易證SC垂直于面ABD,因此棱錐SABC的體積為兩個(gè)棱錐SABD和CABD的體積和,所以棱錐SABC的體積V=SC·S△ADB=×4×=.4、C【解題分析】

根據(jù)圓錐的周長(zhǎng)求出底面半徑,再計(jì)算圓錐的體積,從而估算堆放的稻谷數(shù).【題目詳解】設(shè)圓錐形稻谷堆的底面半徑為尺,則底面周長(zhǎng)為尺,解得尺,又高為尺,所以圓錐的體積為(立方尺);又(斛,所以估算堆放的稻谷約有61.73(斛.故選:.【題目點(diǎn)撥】本題考查了椎體的體積計(jì)算問題,也考查了實(shí)際應(yīng)用問題,是基礎(chǔ)題.5、C【解題分析】

求得直線所過的定點(diǎn),當(dāng)和直線垂直時(shí),距離取得最大值,根據(jù)斜率乘積等于列方程,由此求得的值.【題目詳解】直線可化為,故直線過定點(diǎn),當(dāng)和直線垂直時(shí),距離取得最大值,故,故選C.【題目點(diǎn)撥】本小題主要考查含有參數(shù)的直線過定點(diǎn)的問題,考查點(diǎn)到直線距離的最值問題,屬于基礎(chǔ)題.6、B【解題分析】A.是一個(gè)圓錐以及一個(gè)圓柱;C.是兩個(gè)圓錐;D.一個(gè)圓錐以及一個(gè)圓柱;所以選B.7、B【解題分析】

由等差中項(xiàng)及等比中項(xiàng)的運(yùn)算可得,,再結(jié)合即可得解.【題目詳解】解:因?yàn)闉檎龜?shù),為的等差中項(xiàng),為的等比中項(xiàng),則,,又,當(dāng)且僅當(dāng)時(shí)取等號(hào),又,所以,故選:B.【題目點(diǎn)撥】本題考查了等差中項(xiàng)及等比中項(xiàng)的運(yùn)算,重點(diǎn)考查了重要不等式的應(yīng)用,屬基礎(chǔ)題.8、C【解題分析】

逐一判斷各命題的正誤,可得出結(jié)論.【題目詳解】對(duì)于命題①,若,,且,則,該命題正確;對(duì)于命題②,若,,且,則與平行或相交,該命題錯(cuò)誤;對(duì)于命題③,若,,且,則與平行、垂直或斜交,該命題錯(cuò)誤;對(duì)于命題④,若,,且,則,該命題正確.故選:C.【題目點(diǎn)撥】本題考查線面、面面位置關(guān)系有關(guān)命題真假的判斷,在判斷時(shí),可充分利用線面、面面平行或垂直的判定與性質(zhì)定理,也可以結(jié)合幾何體模型進(jìn)行判斷,考查推理能力,屬于中等題.9、C【解題分析】

根據(jù)疊加法求結(jié)果.【題目詳解】因?yàn)?,所以,因此,選C.【題目點(diǎn)撥】本題考查疊加法求通項(xiàng)以及等比數(shù)列求和,考查基本分析求解能力,屬基礎(chǔ)題.10、D【解題分析】

由于,,,,利用“平方關(guān)系”可得,,變形即可得出.【題目詳解】∵,,∴,∴.∵,∴,∵,∴.∴.故選D.【題目點(diǎn)撥】本題考查了兩角和的余弦公式、三角函數(shù)同角基本關(guān)系式、拆分角等基礎(chǔ)知識(shí)與基本技能方法,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解題分析】

由M在AB邊所在直線上,則,又,然后將,都化為,即可解出答案.【題目詳解】因?yàn)镸在直線AB上,所以可設(shè),

可得,即,又,則由與不共線,所以,解得.故答案為:3【題目點(diǎn)撥】本題考查向量的減法和向量共線的利用,屬于基礎(chǔ)題.12、【解題分析】

先根據(jù)以及余弦定理計(jì)算出的值,再由面積公式即可求解出的面積.【題目詳解】因?yàn)?,所以,所以,所?故答案為:.【題目點(diǎn)撥】本題考查解三角形中利用余弦定理求角以及面積公式的運(yùn)用,難度較易.三角形中,已知兩邊的乘積和第三邊所對(duì)的角即可利用面積公式求解出三角形面積.13、【解題分析】

利用來求的通項(xiàng).【題目詳解】,化簡(jiǎn)得到,填.【題目點(diǎn)撥】一般地,如果知道的前項(xiàng)和,那么我們可利用求其通項(xiàng),注意驗(yàn)證時(shí),(與有關(guān)的解析式)的值是否為,如果是,則,如果不是,則用分段函數(shù)表示.14、【解題分析】

由遞推公式逐步求出.【題目詳解】.故答案為:【題目點(diǎn)撥】本題考查數(shù)列的遞推公式,屬于基礎(chǔ)題.15、【解題分析】試題分析:求圓錐側(cè)面積必須先求圓錐母線,既然已知體積,那么可先求出圓錐的高,再利用圓錐的性質(zhì)(圓錐的高,底面半徑,母線組成直角三角形)可得母線,,,,.考點(diǎn):圓錐的體積與面積公式,圓錐的性質(zhì).16、【解題分析】試題分析:由題可知,;考點(diǎn):扇形面積公式三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)0.【解題分析】

(1)藥物在白鼠血液內(nèi)的濃度y與時(shí)間t的關(guān)系為:當(dāng)a=1時(shí),y=y(tǒng)1+y2;①當(dāng)0<t<1時(shí),y=﹣t4=﹣()2,所以ymax=f();②當(dāng)1≤t≤3時(shí),∵,所以ymax=7﹣2(當(dāng)t時(shí)取到),因?yàn)?,故ymax=f().(2)由題意y①??,又0<t<1,得出a≤1;②??由于1≤t≤3得到,令,則,所以,綜上得到以0.18、(1);(2);(3),.【解題分析】

(1)由函數(shù)的周期公式可求出的值,求出函數(shù)的對(duì)稱軸方程,結(jié)合直線為一條對(duì)稱軸結(jié)合的范圍可得出的值,于此得出函數(shù)的解析式;(2)由得出,再由結(jié)合銳角三角函數(shù)得出,利用正弦定理以及內(nèi)角和定理得出,由條件得出,于此可計(jì)算出的取值范圍;(3)令,得,換元得出,得出方程,設(shè)該方程的兩根為、,由韋達(dá)定理得出,分(ii)、;(ii),;(iii),三種情況討論,計(jì)算出關(guān)于的方程在一個(gè)周期區(qū)間上的實(shí)根個(gè)數(shù),結(jié)合已知條件得出與的值.【題目詳解】(1)由三角函數(shù)的周期公式可得,,令,得,由于直線為函數(shù)的一條對(duì)稱軸,所以,,得,由于,,則,因此,;(2),由三角形的內(nèi)角和定理得,.,且,,.,由,得,由銳角三角函數(shù)的定義得,,由正弦定理得,,,,且,,,.,因此,的取值范圍是;(3)將函數(shù)的圖象向右平移個(gè)單位,得到函數(shù),再將所得的圖象上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來的倍后所得到的圖象對(duì)應(yīng)的函數(shù)為,,令,可得,令,得,,則關(guān)于的二次方程必有兩不等實(shí)根、,則,則、異號(hào),(i)當(dāng)且時(shí),則方程和在區(qū)間均有偶數(shù)個(gè)根,從而方程在也有偶數(shù)個(gè)根,不合乎題意;(ii)當(dāng),則,當(dāng)時(shí),只有一根,有兩根,所以,關(guān)于的方程在上有三個(gè)根,由于,則方程在上有個(gè)根,由于方程在區(qū)間上只有一個(gè)根,在區(qū)間上無實(shí)解,方程在區(qū)間上無實(shí)數(shù)解,在區(qū)間上有兩個(gè)根,因此,關(guān)于的方程在區(qū)間上有個(gè)根,在區(qū)間上有個(gè)根,不合乎題意;(iii)當(dāng)時(shí),則,當(dāng)時(shí),只有一根,有兩根,所以,關(guān)于的方程在上有三個(gè)根,由于,則方程在上有個(gè)根,由于方程在區(qū)間上無實(shí)數(shù)根,在區(qū)間上只有一個(gè)實(shí)數(shù)根,方程在區(qū)間上有兩個(gè)實(shí)數(shù)解,在區(qū)間上無實(shí)數(shù)解,因此,關(guān)于的方程在區(qū)間上有個(gè)根,在區(qū)間上有個(gè)根,此時(shí),,得.綜上所述:,.【題目點(diǎn)撥】本題考查利用三角函數(shù)的性質(zhì)求三角函數(shù)的解析式,以及三角形中的取值范圍問題,以及三角函數(shù)零點(diǎn)個(gè)數(shù)問題,同時(shí)也涉及了復(fù)合函數(shù)方程解的個(gè)數(shù)問題,考查分類討論思想的應(yīng)用,綜合性較強(qiáng),屬于難題.19、【解題分析】試題分析:(1)結(jié)合數(shù)列遞推公式形式可知采用累和法求數(shù)列的通項(xiàng)公式,求解時(shí)需結(jié)合等比數(shù)列求和公式;(2)由得數(shù)列的通項(xiàng)公式為,求和時(shí)采用錯(cuò)位相減法,在的展開式中兩邊同乘以4后,兩式相減可得到試題解析:(1)由已知,當(dāng)時(shí),==,.而,所以數(shù)列的通項(xiàng)公式為.(2)由知…①……7分從而……②①②得,即.考點(diǎn):1.累和法求數(shù)列通項(xiàng)公式;2.錯(cuò)位相減法求和20、(1)證明見解析。(2)【解題分析】

(1)首先根據(jù)已知得到,再根據(jù)線面平行的判定即可得到平面.(2)首先根據(jù)線面垂直的判定證明平面,即可找到為與平面所成角,在計(jì)算其正弦值即可.【題目詳解】(1)因?yàn)榉謩e是,的中點(diǎn),所以四邊形為平行四邊形,即.平面,所以平面.(2)因?yàn)?,為中點(diǎn),所以.平面.所以為與平面所成角.在中,,,所以,.在中,,,所以.【題目點(diǎn)撥】本題第一問考查線面平行的判定,本題第二問考查線面成角,屬于中檔題.21、(1)(2)見解析【解題分析】

(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論