2024屆甘肅省武威第八中學(xué)數(shù)學(xué)高一第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第1頁
2024屆甘肅省武威第八中學(xué)數(shù)學(xué)高一第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第2頁
2024屆甘肅省武威第八中學(xué)數(shù)學(xué)高一第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第3頁
2024屆甘肅省武威第八中學(xué)數(shù)學(xué)高一第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第4頁
2024屆甘肅省武威第八中學(xué)數(shù)學(xué)高一第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆甘肅省武威第八中學(xué)數(shù)學(xué)高一第二學(xué)期期末復(fù)習(xí)檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知中,,,,則BC邊上的中線AM的長度為()A. B. C. D.2.在中,“”是“”的()A.充要條件 B.必要不充分條件C.充分不必要條件 D.既不充分也不必要條件3.《九章算術(shù)》中有這樣一個問題:今有竹九節(jié),欲均減容之(其意為:使容量均勻遞減),上三節(jié)容四升,下三節(jié)容二升,中三節(jié)容幾何?()A.二升 B.三升 C.四升 D.五升4.設(shè)a,b,c表示三條不同的直線,M表示平面,給出下列四個命題:其中正確命題的個數(shù)有()①若a//M,b//M,則a//b;②若b?M,a//b,則a//M;③若a⊥c,b⊥c,則a//b;④若a//c,b//c,則a//b.A.0個 B.1個 C.2個 D.3個5.《九章算術(shù)》中,將四個面都為直角三角形的三棱錐稱之為鱉臑,若三棱錐為鱉臑,平面,三棱錐的四個頂點都在球的球面上,則球的表面積為()A. B. C. D.6.的內(nèi)角的對邊分別為,分別根據(jù)下列條件解三角形,其中有兩解的是()A.B.C.D.7.已知:,,若函數(shù)和有完全相同的對稱軸,則不等式的解集是A. B.C. D.8.袋中有個大小相同的小球,其中個白球,個紅球,個黑球,現(xiàn)在從中任意取一個,則取出的球恰好是紅色或者黑色小球的概率為()A. B. C. D.9.已知實數(shù)滿足,則的最大值為()A.8 B.2 C.4 D.610.若,則的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)為正偶數(shù),,則____________.12.已知無窮等比數(shù)列滿足:對任意的,,則數(shù)列公比的取值集合為__________.13.設(shè)數(shù)列的通項公式,則數(shù)列的前20項和為____________.14.下圖中的幾何體是由兩個有共同底面的圓錐組成.已知兩個圓錐的頂點分別為P、Q,高分別為2、1,底面半徑為1.A為底面圓周上的定點,B為底面圓周上的動點(不與A重合).下列四個結(jié)論:①三棱錐體積的最大值為;②直線PB與平面PAQ所成角的最大值為;③當(dāng)直線BQ與AP所成角最小時,其正弦值為;④直線BQ與AP所成角的最大值為;其中正確的結(jié)論有___________.(寫出所有正確結(jié)論的編號)15.已知遞增數(shù)列共有項,且各項均不為零,,如果從中任取兩項,當(dāng)時,仍是數(shù)列中的項,則數(shù)列的各項和_____.16.已知為所在平面內(nèi)一點,且,則_____三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.的內(nèi)角,,的對邊分別為,,,為邊上一點,為的角平分線,,.(1)求的值:(2)求面積的最大值.18.已知數(shù)列an滿足an+1=2an(1)求證:數(shù)列bn(2)求數(shù)列an的前n項和為S19.已知圓與直線相切(1)若直線與圓交于兩點,求(2)已知,設(shè)為圓上任意一點,證明:為定值20.已知定點,點A在圓上運動,M是線段AB上的一點,且,求出點M所滿足的方程,并說明方程所表示的曲線是什么.21.在平面直角坐標(biāo)中,圓與圓相交與兩點.(I)求線段的長.(II)記圓與軸正半軸交于點,點在圓C上滑動,求面積最大時的直線的方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

利用平行四邊形對角線的平方和等于四條邊的平方和,求的長.【題目詳解】延長至,使,連接、,如圖所示;由題意知四邊形是平行四邊形,且滿足,即,解得,所以邊上的中線的長度為.故選:A.【題目點撥】本題考查平行四邊形對角線的平方和等于四條邊的平方和應(yīng)用問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力.2、A【解題分析】

余弦函數(shù)在上單調(diào)遞減【題目詳解】因為A,B是的內(nèi)角,所以,在上余弦函數(shù)單調(diào)遞減,在中,“”“”【題目點撥】充要條件的判斷,是高考??贾R點,充要條件的判斷一般有三種思路:定義法、等價關(guān)系轉(zhuǎn)化法、集合關(guān)系法。3、B【解題分析】

由題意可得,上、中、下三節(jié)的容量成等差數(shù)列.再利用等差數(shù)列的性質(zhì),求出中三節(jié)容量,即可得到答案.【題目詳解】由題意,上、中、下三節(jié)的容量成等差數(shù)列,上三節(jié)容四升,下三節(jié)容二升,則中三節(jié)容量為,故選B.【題目點撥】本題主要考查了等差數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟記等差數(shù)列的等差中項公式是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.4、B【解題分析】

由空間直線的位置關(guān)系及空間直線與平面的位置關(guān)系逐一判斷即可得解.【題目詳解】解:對于①,若a//M,b//M,則a//b或與相交或與異面,即①錯誤;對于②,若b?M,a//b,則a//M或a?M,即②錯誤;對于③,若a⊥c,b⊥c,則a//b或與相交或與異面,即③錯誤;對于④,若a//c,b//c,由空間直線平行的傳遞性可得a//b,即④正確,即正確命題的個數(shù)有1個,故選:B.【題目點撥】本題考查了空間直線的位置關(guān)系,重點考查了空間直線與平面的位置關(guān)系,屬基礎(chǔ)題.5、C【解題分析】由題意,PA⊥面ABC,則為直角三角形,PA=3,AB=4,所以PB=5,又△ABC是直角三角形,所以∠ABC=90°,AB=4,AC=5所以BC=3,因為為直角三角形,經(jīng)分析只能,故,三棱錐的外接球的圓心為PC的中點,所以則球的表面積為.故選C.6、D【解題分析】

運用正弦定理公式,可以求出另一邊的對角正弦值,最后還要根據(jù)三角形的特點:“大角對大邊”進行合理排除.【題目詳解】A.,由所以不存在這樣的三角形.B.,由且所以只有一個角BC.中,同理也只有一個三角形.D.中此時,所以出現(xiàn)兩個角符合題意,即存在兩個三角形.所以選擇D【題目點撥】在直接用正弦定理求另外一角中,求出后,記得一定要去判斷是否會出現(xiàn)兩個角.7、B【解題分析】

,所以因此,選B.8、D【解題分析】

利用古典概型的概率公式可計算出所求事件的概率.【題目詳解】從袋中個球中任取一個球,取出的球恰好是一個紅色或黑色小球的基本事件數(shù)為,因此,取出的球恰好是紅色或者黑色小球的概率為,故選D.【題目點撥】本題考查古典概型概率的計算,解題時要確定出全部基本事件數(shù)和所求事件所包含的基本事件數(shù),并利用古典概型的概率公式進行計算,考查計算能力,屬于基礎(chǔ)題.9、D【解題分析】

設(shè)點,根據(jù)條件知點均在單位圓上,由向量數(shù)量積或斜率知識,可發(fā)現(xiàn),對目標(biāo)式子進行變形,發(fā)現(xiàn)其幾何意義為兩點到直線的距離之和有關(guān).【題目詳解】設(shè),,均在圓上,且,設(shè)的中點為,則點到原點的距離為,點在圓上,設(shè)到直線的距離分別為,,,.【題目點撥】利用數(shù)形結(jié)合思想,發(fā)現(xiàn)代數(shù)式的幾何意義,即構(gòu)造系數(shù),才能看出目標(biāo)式子的幾何意義為兩點到直線距離之和的倍.10、C【解題分析】

由,得,當(dāng)時,即可求出的范圍,根據(jù)幾何概型的公式,即可求解.【題目詳解】由,得,當(dāng),即當(dāng)時,,所以的概率為.【題目點撥】本題考查幾何概型的公式,屬基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

得出的表達(dá)式,然后可計算出的表達(dá)式.【題目詳解】,,因此,.故答案為:.【題目點撥】本題考查數(shù)學(xué)歸納法的應(yīng)用,考查項的變化,考查計算能力,屬于基礎(chǔ)題.12、【解題分析】

根據(jù)條件先得到:的表示,然后再根據(jù)是等比數(shù)列討論公比的情況.【題目詳解】因為,所以,即;取連續(xù)的有限項構(gòu)成數(shù)列,不妨令,則,且,則此時必為整數(shù);當(dāng)時,,不符合;當(dāng)時,,符合,此時公比;當(dāng)時,,不符合;當(dāng)時,,不符合;故:公比.【題目點撥】本題考查無窮等比數(shù)列的公比,難度較難,分析這種抽象類型的數(shù)列問題時,經(jīng)常需要進行分類,可先通過列舉的方式找到思路,然后再準(zhǔn)確分析.13、【解題分析】

對去絕對值,得,再求得的前項和,代入=20即可求解【題目詳解】由題的前n項和為的前20項和,代入可得.故答案為:260【題目點撥】本題考查等差數(shù)列的前項和,去絕對值是關(guān)鍵,考查計算能力,是基礎(chǔ)題14、①③【解題分析】

由①可知只需求點A到面的最大值對于②,求直線PB與平面PAQ所成角的最大值,可轉(zhuǎn)化為到軸截面距離的最大值問題進行求解對于③④,可采用建系法進行分析【題目詳解】選項①如圖所示,當(dāng)時,四棱錐體積最大,選項②中,線PB與平面PAQ所成角最大值的正弦值為,所以選項③和④,如圖所示:以垂直于方向為x軸,方向為y軸,方向為z軸,其中設(shè),.,設(shè)直線BQ與AP所成角為,,當(dāng)時,取到最大值,,此時,由于,,,所以取不到答案選①、③【題目點撥】幾何體的旋轉(zhuǎn)問題需要結(jié)合動態(tài)圖形和立體幾何基本知識進行求解,需找臨界點是正確解題的關(guān)鍵,遇到難以把握的最值問題,可采用建系法進行求解.15、【解題分析】

∵當(dāng)時,仍是數(shù)列中的項,而數(shù)列是遞增數(shù)列,∴,所以必有,,利用累加法可得:,故,得,故答案為.點睛:本題主要考查了數(shù)列的求和,解題的關(guān)鍵是單調(diào)性的利用以及累加法的運用,有一定難度;根據(jù)題中條件從中任取兩項,當(dāng)時,仍是數(shù)列中的項,結(jié)合遞增數(shù)列必有,,利用累加法可得結(jié)果.16、【解題分析】

將向量進行等量代換,然后做出對應(yīng)圖形,利用平面向量基本定理進行表示即可.【題目詳解】解:設(shè),則根據(jù)題意可得,,如圖所示,作,垂足分別為,則又,,故答案為.【題目點撥】本題考查了平面向量基本定理及其意義,兩個向量的加減法及其幾何意義,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)3【解題分析】

(1)由,,根據(jù)三角形面積公式可知,,再根據(jù)角平分線的定義可知,到,的距離相等,所以,即可求出;(2)先根據(jù)(1)可得,,由平方關(guān)系得,再根據(jù)三角形的面積公式,可化簡得,然后根據(jù)基本不等式即可求出面積的最大值.【題目詳解】(1)如圖所示:因為,所以.又因為為的角平分線,所以到,的距離相等,所以所以.(2)由(1)及余弦定理得:所以,又因為所以,所以又因為且,故所以,當(dāng)且僅當(dāng)即時取等號.所以面積的最大值為.【題目點撥】本題主要考查正余弦定理在解三角形中的應(yīng)用,三角形面積公式的應(yīng)用,以及利用基本不等式求最值,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運算能力,屬于中檔題.18、(1)證明見解析;(2)S【解題分析】

(1)計算得到bn+1bn(2)根據(jù)(1)知an【題目詳解】(1)因為bn+1b所以數(shù)列bn(2)因為bn=aSn【題目點撥】本題考查了等比數(shù)列的證明,分組求和,意在考查學(xué)生的計算能力和對于數(shù)列方法的靈活運用.19、(1)4;(2)詳見解析.【解題分析】

(1)利用直線與圓相切,結(jié)合點到直線距離公式求出半徑,從而得到圓的方程;根據(jù)直線被圓截得弦長的求解方法可求得結(jié)果;(2)設(shè),則,利用兩點間距離公式表示出,化簡可得結(jié)果.【題目詳解】(1)由題意知,圓心到直線的距離:圓與直線相切圓方程為:圓心到直線的距離:,(2)證明:設(shè),則即為定值【題目點撥】本題考查直線與圓的綜合應(yīng)用問題,涉及到直線與圓位置關(guān)系的應(yīng)用、直線被圓截得弦長的求解、兩點間距離公式的應(yīng)用、定值問題的求解.解決定值問題的關(guān)鍵是能夠用變量表示出所求量,通過化簡、消元整理出結(jié)果.20、;方程所表示的曲線是以為圓心,為半徑的圓.【解題分析】

設(shè)出點的坐標(biāo),結(jié)合向量的關(guān)系式及圓的方程可求.【題目詳解】設(shè),,因為,所以;,,因為點A在圓上運動,所以;化簡得;方程所表示的曲線是以為圓心,為半徑的圓.【題目點撥】本題主要考查曲線方程的求解,相關(guān)點法是常用的方法,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).21、(I);(II)或.【解題分析】

(I)先求得相交弦所在的直線方程,再求得圓的圓心到相交弦所在直線的距離,然后利用直線和圓相交所得弦長公式,計算出弦長.(II)先求得當(dāng)時,取

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論