2024屆安徽省阜陽四中、阜南二中、阜南實驗中學三校高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第1頁
2024屆安徽省阜陽四中、阜南二中、阜南實驗中學三校高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第2頁
2024屆安徽省阜陽四中、阜南二中、阜南實驗中學三校高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第3頁
2024屆安徽省阜陽四中、阜南二中、阜南實驗中學三校高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第4頁
2024屆安徽省阜陽四中、阜南二中、阜南實驗中學三校高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆安徽省阜陽四中、阜南二中、阜南實驗中學三校高一數(shù)學第二學期期末監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,,,則實數(shù)的值為()A. B. C.2 D.32.化簡=()A. B.C. D.3.過點作拋物線的兩條切線,切點為,則的面積為()A. B. C. D.4.函數(shù)在上零點的個數(shù)為()A.2 B.3 C.4 D.55.為了解某地區(qū)的中小學生視力情況,擬從該地區(qū)的中小學生中抽取部分學生進行調(diào)查,事先已了解到該地區(qū)小學、初中、高中三個學段學生的視力情況有較大差異,而男女生視力情況差異不大,在下面的抽樣方法中,最合理的抽樣方法是()A.簡單隨機抽樣 B.按性別分層抽樣C.按學段分層抽樣 D.系統(tǒng)抽樣6.下列函數(shù)的最小值為的是()A. B.C. D.7.從甲、乙等5名學生中隨機選出2人,則甲被選中的概率為()A. B.C. D.8.方程的解所在區(qū)間是()A. B.C. D.9.如圖,在四棱錐中,底面為平行四邊形,,,,,且平面,為的中點,則下列結論錯誤的是()A. B.C.平面平面 D.三棱錐的體積為10.某班20名學生的期末考試成績用如圖莖葉圖表示,執(zhí)行如圖程序框圖,若輸入的()分別為這20名學生的考試成績,則輸出的結果為()A.11 B.10 C.9 D.8二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓及點,若滿足:存在圓C上的兩點P和Q,使得,則實數(shù)m的取值范圍是________.12.己知函數(shù),有以下結論:①的圖象關于直線軸對稱②在區(qū)間上單調(diào)遞減③的一個對稱中心是④的最大值為則上述說法正確的序號為__________(請?zhí)钌纤姓_序號).13.在各項均為正數(shù)的等比數(shù)列中,,,則___________.14.若實數(shù)滿足,,則__________.15.對于數(shù)列,若存在,使得,則刪去,依此操作,直到所得到的數(shù)列沒有相同項,將最后得到的數(shù)列稱為原數(shù)列的“基數(shù)列”.若,則數(shù)列的“基數(shù)列”的項數(shù)為__________________.16.設是等差數(shù)列的前項和,若,則________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,a,b,c分別為角A,B,C的對邊,且,,,求角A的大?。?8.已知數(shù)列的前項和,且;(1)求它的通項.(2)若,求數(shù)列的前項和.19.已知分別是內(nèi)角的對邊,.(1)若,求(2)若,且求的面積.20.如圖所示,在梯形中,∥,⊥,,⊥平面,⊥.(1)證明:⊥平面;(2)若,求點到平面的距離.21.已知向量,,.(1)若,求的值;(2)若,,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

將向量的坐標代入中,利用坐標相等,即可得答案.【題目詳解】∵,∴.故選:A.【題目點撥】本題考查向量相等的坐標運算,考查運算求解能力,屬于基礎題.2、D【解題分析】

根據(jù)向量的加法與減法的運算法則,即可求解,得到答案.【題目詳解】由題意,根據(jù)向量的運算法則,可得=++==,故選D.【題目點撥】本題主要考查了向量的加法與減法的運算法則,其中解答中熟記向量的加法與減法的運算法則,準確化簡、運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.3、B【解題分析】設拋物線過點的切線方程為,即,將點代入可得,同理都滿足方程,即為直線的方程為,與拋物線聯(lián)立,可得,點到直線的距離,則的面積為,故選B.【方法點晴】本題主要考查利用導數(shù)求曲線切線方程以及弦長公式與點到直線距離公式,屬于難題.求曲線切線方程的一般步驟是:(1)求出在處的導數(shù),即在點出的切線斜率(當曲線在處的切線與軸平行時,在處導數(shù)不存在,切線方程為);(2)由點斜式求得切線方程.4、D【解題分析】

在同一直角坐標系下,分別作出與的圖象,結合函數(shù)圖象即可求解.【題目詳解】解:由題意知:函數(shù)在上零點個數(shù),等價于與的圖象在同一直角坐標系下交點的個數(shù),作圖如下:由圖可知:函數(shù)在上有個零點.故選:D【題目點撥】本題考查函數(shù)的零點的知識,考查數(shù)形結合思想,屬于中檔題.5、C【解題分析】試題分析:符合分層抽樣法的定義,故選C.考點:分層抽樣.6、C【解題分析】分析:利用基本不等式的性質(zhì)即可判斷出正誤,注意“一正二定三相等”的使用法則.詳解:A.時顯然不滿足條件;B.其最小值大于1.D.令因此不正確.故選C.點睛:本題考查基本不等式,考查通過給變量取特殊值,舉反例來說明某個命題不正確,是一種簡單有效的方法.7、B【解題分析】試題分析:從甲乙等名學生中隨機選出人,基本事件的總數(shù)為,甲被選中包含的基本事件的個數(shù),所以甲被選中的概率,故選B.考點:古典概型及其概率的計算.8、D【解題分析】

令,則,所以零點在區(qū)間.方程的解所在區(qū)間是,故選D.9、B【解題分析】

根據(jù)余弦定理可求得,利用勾股定理證得,由線面垂直性質(zhì)可知,利用線面垂直判定定理可得平面,利用線面垂直性質(zhì)可知正確;假設正確,由和假設可證得平面,由線面垂直性質(zhì)可知,從而得到,顯然錯誤,則錯誤;由面面垂直判定定理可證得正確;由可求得三棱錐體積,知正確,從而可得選項.【題目詳解】,,平面,平面又平面,平面平面,則正確;若,又且平面,平面平面又,與矛盾,假設錯誤,則錯誤;平面,平面又平面平面平面,則正確;為中點,,則正確本題正確選項:【題目點撥】本題考查立體幾何中相關命題的判斷,涉及到線面垂直的判定與性質(zhì)定理的應用、面面垂直關系的判定、三棱錐體積的求解等知識,是對立體幾何部分的定理的綜合考查,關鍵是能夠準確判定出圖形中的線面垂直關系.10、A【解題分析】

首先判斷程序框圖的功能,然后從莖葉圖數(shù)出相應人數(shù),從而得到答案.【題目詳解】由算法流程圖可知,其統(tǒng)計的是成績大于等于120的人數(shù),所以由莖葉圖知:成績大于等于120的人數(shù)為11,故選A.【題目點撥】本題主要考查算法框圖的輸出結果,意在考查學生的分析能力及計算能力,難度不大.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

設出點P、Q的坐標,利用平面向量的坐標運算以及兩圓相交的條件求出實數(shù)m的取值范圍.【題目詳解】設點,由得,由點在圓上,得,又在圓上,,與有交點,則,解得故實數(shù)m的取值范圍為.故答案為:【題目點撥】本題考查了向量的坐標運算、利用圓與圓的位置關系求參數(shù)的取值范圍,屬于中檔題.12、②④【解題分析】

根據(jù)三角函數(shù)性質(zhì),逐一判斷選項得到答案.【題目詳解】,根據(jù)圖像知:①的圖象關于直線軸對稱,錯誤②在區(qū)間上單調(diào)遞減,正確③的一個對稱中心是,錯誤④的最大值為,正確故答案為②④【題目點撥】本題考查了三角函數(shù)的化簡,三角函數(shù)的圖像,三角函數(shù)性質(zhì),意在考查學生對于三角函數(shù)的綜合理解和應用.13、8【解題分析】

根據(jù)題中數(shù)列,結合等比數(shù)列的性質(zhì),得到,即可得出結果.【題目詳解】因為數(shù)列為各項均為正數(shù)的等比數(shù)列,,,所以.故答案為【題目點撥】本題主要考查等比數(shù)列的性質(zhì)的應用,熟記等比數(shù)列的性質(zhì)即可,屬于基礎題型.14、【解題分析】

由反正弦函數(shù)的定義求解.【題目詳解】∵,∴,,∴,∴.故答案為:.【題目點撥】本題考查反正弦函數(shù),解題時注意反正弦函數(shù)的取值范圍是,結合誘導公式求解.15、10【解題分析】

由題意可得,只需計算所有可能取值的個數(shù)即可.【題目詳解】因為求的可能取值個數(shù),由周期性,故只需考慮的情況即可.此時.一共19個取值,故只需分析,又由,故,,即不同的取值個數(shù)一共為個.即“基數(shù)列”分別為和共10項.故答案為10【題目點撥】本題主要考查余弦函數(shù)的周期性.注意到隨著的增大的值周期變化,故只需考慮一個周期內(nèi)的情況.16、5【解題分析】

由等差數(shù)列的前和公式,求得,再結合等差數(shù)列的性質(zhì),即可求解.【題目詳解】由題意,根據(jù)等差數(shù)列的前和公式,可得,解得,又由等差數(shù)列的性質(zhì),可得.故答案為:.【題目點撥】本題主要考查了等差數(shù)列的性質(zhì),以及等差數(shù)列的前和公式的應用,其中解答中熟記等差數(shù)列的性質(zhì),以及合理應用等差數(shù)列的前和公式求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解題分析】

由正弦定理得,即得,再利用余弦定理求解.【題目詳解】因為在三角形ABC中,由正弦定理得.又因為,所以得,由余弦定理得.又三角形內(nèi)角在.故角A為.【題目點撥】本題主要考查正弦定理余弦定理解三角形,意在考查學生對這些知識的理解掌握水平.18、(1)(2)【解題分析】

(1)由,利用與的關系式,即可求得數(shù)列的通項公式;(2)由(1)可得,利用乘公比錯位相減法,即可求得數(shù)列的前項和.【題目詳解】(1)由,當時,;當時,,當也成立,所以則通項;(2)由(1)可得,-,,兩式相減得所以數(shù)列的前項和為.【題目點撥】本題主要考查了數(shù)列和的關系、以及“錯位相減法”求和的應用,此類題目是數(shù)列問題中的常見題型,解答中確定通項公式是基礎,準確計算求和是關鍵,易錯點是在“錯位”之后求和時,弄錯等比數(shù)列的項數(shù),著重考查了的邏輯思維能力及基本計算能力等.19、(1);(2)1【解題分析】試題分析:(1)由,結合正弦定理可得:,再利用余弦定理即可得出(2)利用(1)及勾股定理可得c,再利用三角形面積計算公式即可得出試題解析:(1)由題設及正弦定理可得又,可得由余弦定理可得(2)由(1)知因為,由勾股定理得故,得所以的面積為1考點:正弦定理,余弦定理解三角形20、(1)見解析(2)【解題分析】

(1)通過⊥,⊥來證明;(2)根據(jù)等體積法求解.【題目詳解】(1)證明:∵⊥平面,平面,∴⊥.又⊥,,平面,平面,∴⊥平面.(2)由已知得,所以且由(1)可知,由勾股定理得∵平面∴=,且∴,由,得∴即點到平面的距離為【題目點撥】本題考查線面垂直與點到平面的距離.線面垂直的證明要轉(zhuǎn)化為線線垂直;點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論