浙江省樂清市樂成公立寄宿學(xué)校2024屆數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
浙江省樂清市樂成公立寄宿學(xué)校2024屆數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
浙江省樂清市樂成公立寄宿學(xué)校2024屆數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
浙江省樂清市樂成公立寄宿學(xué)校2024屆數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
浙江省樂清市樂成公立寄宿學(xué)校2024屆數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省樂清市樂成公立寄宿學(xué)校2024屆數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在各項均為正數(shù)的等比數(shù)列中,若,則()A.1 B.4C.2 D.2.已知,則的最小值是()A.2 B.6 C.2 D.23.已知a,b,c滿足,那么下列選項一定正確的是()A. B. C. D.4.已知是公差不為零的等差數(shù)列,其前項和為,若成等比數(shù)列,則A. B.C. D.5.在△ABC中,角所對的邊分別為,且則最大角為()A. B. C. D.6.設(shè)點(diǎn)M是直線上的一個動點(diǎn),M的橫坐標(biāo)為,若在圓上存在點(diǎn)N,使得,則的取值范圍是()A. B. C. D.7.設(shè)向量滿足,且,則向量在向量方向上的投影為A.1 B. C. D.8.某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論錯誤的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)9.法國“業(yè)余數(shù)學(xué)家之王”皮埃爾·德·費(fèi)馬在1936年發(fā)現(xiàn)的定理:若x是一個不能被質(zhì)數(shù)p整除的整數(shù),則必能被p整除,后來人們稱為費(fèi)馬小定理.按照該定理若在集合中任取兩個數(shù),其中一個作為x,另一個作為p,則所取的兩個數(shù)符合費(fèi)馬小定理的概率為()A. B. C. D.10.若,下列不等式一定成立的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則__________.(結(jié)果用反三角函數(shù)表示)12.?dāng)?shù)列滿足,當(dāng)時,,則是否存在不小于2的正整數(shù),使成立?若存在,則在橫線處直接填寫的值;若不存在,就填寫“不存在”_______.13.在等比數(shù)列中,若,則__________.14.已知正實(shí)數(shù)滿足,則的最大值為_______.15.已知,則的值為______16.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一個周期的圖象,則f(1)=__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.函數(shù)在同一個周期內(nèi),當(dāng)時,取最大值1,當(dāng)時,取最小值-1.(1)求函數(shù)的單調(diào)遞減區(qū)間.(2)若函數(shù)滿足方程,求在內(nèi)的所有實(shí)數(shù)根之和.18.已知為數(shù)列的前n項和,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和.19.已知函數(shù),,且是R上的奇函數(shù),(1)求實(shí)數(shù)a的值;(2)判斷函數(shù))的單調(diào)性(不必說明理由),并求不等式的解集;(3)若不等式對任意的恒成立,求實(shí)數(shù)b的取值范圍.20.已知,,,.(1)求的最小值(2)證明:.21.已知四棱錐的底面為直角梯形,,,底面,且,是的中點(diǎn).(1)求證:直線平面;(2)若,求二面角的正弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】試題分析:由題意得,根據(jù)等比數(shù)列的性質(zhì)可知,又因為,故選C.考點(diǎn):等比數(shù)列的性質(zhì).2、B【解題分析】試題分析:因為,故.考點(diǎn):基本不等式的運(yùn)用,考查學(xué)生的基本運(yùn)算能力.3、D【解題分析】

c<b<a,且ac<1,可得c<1且a>1.利用不等式的基本性質(zhì)即可得出.【題目詳解】∵c<b<a,且ac<1,∴c<1且a>1,b與1的大小關(guān)系不定.∴滿足bc>ac,ac<ab,故選D.【題目點(diǎn)撥】本題考查了不等式的基本性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.4、B【解題分析】∵等差數(shù)列,,,成等比數(shù)列,∴,∴,∴,,故選B.考點(diǎn):1.等差數(shù)列的通項公式及其前項和;2.等比數(shù)列的概念5、C【解題分析】

根據(jù)正弦定理可得三邊的比例關(guān)系;由大邊對大角可知最大,利用余弦定理求得余弦值,從而求得角的大小.【題目詳解】由正弦定理可得:設(shè),,最大為最大角本題正確選項:【題目點(diǎn)撥】本題考查正弦定理、余弦定理的應(yīng)用,涉及到三角形中大邊對大角的關(guān)系,屬于基礎(chǔ)題.6、D【解題分析】

由題意畫出圖形,根據(jù)直線與圓的位置關(guān)系可得相切,設(shè)切點(diǎn)為P,數(shù)形結(jié)合找出M點(diǎn)滿足|MP|≤|OP|的范圍,從而得到答案.【題目詳解】由題意可知直線與圓相切,如圖,設(shè)直線x+y?2=0與圓相切于點(diǎn)P,要使在圓上存在點(diǎn)N,使得,使得最大值大于或等于時一定存在點(diǎn)N,使得,而當(dāng)MN與圓相切時,此時|MP|取得最大值,則有|MP|≤|OP|才能滿足題意,圖中只有在M1、M2之間才可滿足,∴的取值范圍是[0,2].故選:D.【題目點(diǎn)撥】本題考查直線與圓的位置關(guān)系,根據(jù)數(shù)形結(jié)合思想,畫圖進(jìn)行分析可得,屬于中等題.7、D【解題分析】

先由題中條件,求出向量的數(shù)量積,再由向量數(shù)量積的幾何意義,即可求出投影.【題目詳解】因為,,所以,所以,故向量在向量方向上的投影為.故選D【題目點(diǎn)撥】本題主要考查平面向量的數(shù)量積,熟記平面向量數(shù)量積的幾何意義即可,屬于??碱}型.8、A【解題分析】

觀察折線圖可知月接待游客量每年7,8月份明顯高于12月份,且折線圖呈現(xiàn)增長趨勢,高峰都出現(xiàn)在7、8月份,1月至6月的月接待游客量相對于7月至12月波動性更小.【題目詳解】對于選項A,由圖易知月接待游客量每年7,8月份明顯高于12月份,故A錯;對于選項B,觀察折線圖的變化趨勢可知年接待游客量逐年增加,故B正確;對于選項C,D,由圖可知顯然正確.故選A.【題目點(diǎn)撥】本題考查折線圖,考查考生的識圖能力,屬于基礎(chǔ)題.9、A【解題分析】

用列舉法結(jié)合古典概型概率公式計算即可得出答案.【題目詳解】用表示抽取的兩個數(shù),其中第一個為,第二個為總的基本事件分別為:,,,共12種其中所取的兩個數(shù)符合費(fèi)馬小定理的基本事件分別為:,,共8種則所取的兩個數(shù)符合費(fèi)馬小定理的概率故選:A【題目點(diǎn)撥】本題主要考查了利用古典概型概率公式計算概率,屬于基礎(chǔ)題.10、D【解題分析】

通過反例、作差法、不等式的性質(zhì)可依次判斷各個選項即可.【題目詳解】若,,則,錯誤;,則,錯誤;,,則,錯誤;,則等價于,成立,正確.本題正確選項:【題目點(diǎn)撥】本題考查不等式的性質(zhì),屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、;【解題分析】

由條件利用反三角函數(shù)的定義和性質(zhì)即可求解.【題目詳解】,則,故答案為:【題目點(diǎn)撥】本題考查了反三角函數(shù)的定義和性質(zhì),屬于基礎(chǔ)題.12、70【解題分析】

構(gòu)造數(shù)列,兩式與相減可得數(shù)列{}為等差數(shù)列,求出,讓=0即可求出.【題目詳解】設(shè)兩式相減得又?jǐn)?shù)列從第5項開始為等差數(shù)列,由已知易得均不為0所以當(dāng)n=70的時候成立,故答案填70.【題目點(diǎn)撥】如果遞推式中出現(xiàn)和的形式,比如,可以嘗試退項相減,即讓取后,兩式作差,和的部分因為相減而抵消,剩下的就好算了。13、80【解題分析】

由即可求出【題目詳解】因為是等比數(shù)列,所以,所以即故答案為:80【題目點(diǎn)撥】本題考查的是等比數(shù)列的性質(zhì),較簡單14、【解題分析】

對所求式子平邊平方,再將代入,從而將問題轉(zhuǎn)化為求【題目詳解】∵∵,∴,∴,等號成立當(dāng)且僅當(dāng).故答案為:.【題目點(diǎn)撥】本題考查條件等式下利用基本不等式求最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時注意等號成立的條件.15、【解題分析】

根據(jù)兩角差的正弦公式,化簡,解出的值,再平方,即可求解.【題目詳解】由題意,可知,,平方可得則故答案為:【題目點(diǎn)撥】本題考查三角函數(shù)常用公式關(guān)系轉(zhuǎn)換,屬于基礎(chǔ)題.16、2【解題分析】

由三角函數(shù)圖象,利用三角函數(shù)的性質(zhì),求得函數(shù)的解析式,即可求解的值,得到答案.【題目詳解】由三角函數(shù)圖象,可得,由,得,于是,又,即,解得,所以,則.【題目點(diǎn)撥】本題主要考查了由三角函數(shù)的部分圖象求解函數(shù)的解析式及其應(yīng)用,其中解答中熟記三角函數(shù)的圖象與性質(zhì),準(zhǔn)確計算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解題分析】

(1)先求出周期得,由最高點(diǎn)坐標(biāo)可求得,然后由正弦函數(shù)的單調(diào)性得結(jié)論;(2)由直線與的圖象交點(diǎn)的對稱性可得.【題目詳解】(1)由題意,∴,又,,,由得,∴,令得,∴單調(diào)減區(qū)間是,;(2)在含有三個周期,如圖,的圖象與在上有六個交點(diǎn),前面兩個交點(diǎn)關(guān)于直線對稱,中間兩個關(guān)于直線對稱,最后兩個關(guān)于直線對稱,∴所求六個根的和為.【題目點(diǎn)撥】本題考查由三角函數(shù)的性質(zhì)求解析式,考查函數(shù)的單調(diào)性,考查函數(shù)零點(diǎn)與方程根的分布問題.函數(shù)零點(diǎn)與方程根的分布問題可用數(shù)形結(jié)合思想,把方程的根轉(zhuǎn)化為函數(shù)圖象與直線交點(diǎn)的橫坐標(biāo),再利用對稱性求解.18、(1)(2)【解題分析】

(1)先根據(jù)和項與通項關(guān)系得項之間遞推關(guān)系,再根據(jù)等比數(shù)列定義以及通項公式求結(jié)果,(2)根據(jù)錯位相減法求結(jié)果.【題目詳解】(1)因為,所以當(dāng)時,,相減得,,當(dāng)時,,因此數(shù)列為首項為,2為公比的等比數(shù)列,(2),所以,則2,兩式相減得.【題目點(diǎn)撥】本題考查錯位相減法求和以及由和項求通項,考查基本求解能力,屬中檔題.19、(1)0(2),(3)【解題分析】

(1)根據(jù)奇函數(shù)的性質(zhì)可得.,由此求得值(2)函數(shù)在上單調(diào)遞增,根據(jù)單調(diào)性不等式即可(3)不等式..分離參數(shù)即可.【題目詳解】(1),是上的奇函數(shù)..即得:.即,得:.,.(2)由(1)得.函數(shù)在上單調(diào)遞增,由不等式得不等式.所以,解得不等式的解集為,.(3)由不等式在上恒成立,可得,即.當(dāng)時,,當(dāng),時,.令,.故實(shí)數(shù)b的取值范圍.【題目點(diǎn)撥】本題主要考查指數(shù)型復(fù)合函數(shù)的性質(zhì)以及應(yīng)用,函數(shù)的奇偶性的應(yīng)用,以及函數(shù)的恒成立問題,屬于中檔題.20、(1)1(2)見解析【解題分析】

(1)根據(jù)基本不等式即可求出,(2)利用x2+y2+z2(x2+y2+z2+x2+y2+y2+z2+x2+z2),再根據(jù)基本不等式即可證明【題目詳解】(1)因為,,所以,即,當(dāng)且僅當(dāng)時等號成立,此時取得最小值1.(2).當(dāng)且僅當(dāng)時等號成立,【題目點(diǎn)撥】本題考查了基本不等式求最值和不等式的證明,屬于中檔題.21、(1)證明見解析;(2).【解題分析】

(1)取中點(diǎn),連結(jié),,推導(dǎo)出,,從而平面平面,由此能證明直線平面;(2)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論