版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海實驗學校2023年高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知扇形的周長是6,圓心角為,則扇形的面積是()A.1 B.2C.3 D.42.已知函數(shù),方程在有兩個解,記,則下列說法正確的是()A.函數(shù)的值域是B.若,的增區(qū)間為和C.若,則D.函數(shù)的最大值為3.將函數(shù)的圖像向左、向下各平移1個單位長度,得到的函數(shù)圖像,則()A. B.C. D.4.若函數(shù)且,則該函數(shù)過的定點為()A. B.C. D.5.對于兩條平行直線和圓的位置關(guān)系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關(guān)系為“平行相切”;若兩直線都與圓相離,則稱該位置關(guān)系為“平行相離”;否則稱為“平行相交”.已知直線,與圓的位置關(guān)系是“平行相交”,則實數(shù)的取值范圍為A. B.C. D.6.已知函數(shù)在上存在零點,則的取值范圍為()A. B.C. D.7.下列函數(shù)中,既不是奇函數(shù)也不是偶函數(shù)的是A. B.C. D.8.已知a=20.1,b=log43.6,c=log30.3,則()A.a>b>c B.b>a>cC.a>c>b D.c>a>b9.已知角的終邊過點,則()A. B.C. D.110.已知水平放置的四邊形按斜二測畫法得到如圖所示的直觀圖,其中,,,,則原四邊形的面積為()A. B.C. D.11.函數(shù)的定義域為,值域為,則的取值范圍是()A. B.C. D.12.將函數(shù)的圖象上所有點的橫坐標縮短為原來的倍(縱坐標不變),再向右平移個單位,得到函數(shù)的圖象,則函數(shù)的圖象的一條對稱軸為A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.給出下列四個命題:①函數(shù)y=2sin(2x-)的一條對稱軸是x=;②函數(shù)y=tanx的圖象關(guān)于點(,0)對稱;③正弦函數(shù)在第一象限內(nèi)為增函數(shù);④存在實數(shù)α,使sinα+cosα=.以上四個命題中正確的有____(填寫正確命題前面的序號).14.已知指數(shù)函數(shù)(且)在區(qū)間上的最大值是最小值的2倍,則______15.已知冪函數(shù)的圖象經(jīng)過點(16,4),則k-a的值為___________16.已知,,,則有最大值為__________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.如圖,在中,,,點在的延長線上,點是邊上的一點,且存在非零實數(shù),使.(Ⅰ)求與的數(shù)量積;(Ⅱ)求與的數(shù)量積.18.已知函數(shù)的圖象關(guān)于直線對稱,若實數(shù)滿足時,的最小值為1(1)求的解析式;(2)將函數(shù)的圖象向左平移個單位后,得到的圖象,求的單調(diào)遞減區(qū)間19.如圖,在四邊形中,,,,為等邊三角形,是的中點.設(shè),.(1)用,表示,,(2)求與夾角的余弦值.20.已知且.(1)求的解析式;(2)解關(guān)于x不等式:.21.如圖,在四棱錐中,平面,,為棱上一點.(1)設(shè)為與的交點,若,求證:平面;(2)若,求證:22.已知函數(shù)f(x)=2sin(ωx+φ)+1()的最小正周期為π,且(1)求ω和φ的值;(2)函數(shù)f(x)的圖象縱坐標不變的情況下向右平移個單位,得到函數(shù)g(x)的圖象,①求函數(shù)g(x)的單調(diào)增區(qū)間;②求函數(shù)g(x)在的最大值
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、B【解析】設(shè)扇形的半徑為r,弧長為l,先由周長求出半徑和弧長,即可求出扇形的面積.【詳解】設(shè)扇形的半徑為r,弧長為l,因為圓心角為,所以.因為扇形的周長是6,所以,解得:.所以扇形的面積是.故選:B2、B【解析】利用函數(shù)的單調(diào)性判斷AB選項;解方程求出從而判斷C選項;舉反例判斷D選項.【詳解】對于A選項,當時,,,為偶函數(shù),當時,,任取,且,,若,則;若,則,即函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,圖像如圖示:結(jié)合偶函數(shù)的性質(zhì)可知,的值域是,故A選項錯誤;對于B選項,,當時,,,則為偶函數(shù),當時,,易知函數(shù)在區(qū)間上單調(diào)遞減,當時,,易知函數(shù)在區(qū)間上單調(diào)遞增,圖像如圖示:根據(jù)偶函數(shù)的性質(zhì)可知,函數(shù)的增區(qū)間為和,故B選項正確;對于C選項,若,圖像如圖示:若,則,與方程在有兩個解矛盾,故C選項錯誤;對于D選項,若時,,圖像如圖所示:當時,則與方程在有兩個解矛盾,進而函數(shù)的最大值為4錯誤,故D選項錯誤;故選:B3、B【解析】根據(jù)函數(shù)的圖象變換的原則,結(jié)合對數(shù)的運算性質(zhì),準確運算,即可求解.【詳解】由題意,將函數(shù)的圖像向左、向下各平移1個單位長度,可得.故選:B.4、D【解析】根據(jù)指數(shù)函數(shù)的圖像經(jīng)過定點坐標是,利用平移可得到答案.【詳解】因為指數(shù)函數(shù)的圖像經(jīng)過定點坐標是,函數(shù)圖像向右平移個單位,再向上平移個單位,得到,函數(shù)的圖像過的定點.故選:.【點睛】本題主要考查的是指數(shù)函數(shù)的圖像和性質(zhì),考查學生對指數(shù)函數(shù)的理解,是基礎(chǔ)題.5、D【解析】根據(jù)定義先求出l1,l2與圓相切,再求出l1,l2與圓外離,結(jié)合定義即可得到答案.【詳解】圓C的標準方程為(x+1)2+y2=b2.由兩直線平行,可得a(a+1)-6=0,解得a=2或a=-3.當a=2時,直線l1與l2重合,舍去;當a=-3時,l1:x-y-2=0,l2:x-y+3=0.由l1與圓C相切,得,由l2與圓C相切,得.當l1、l2與圓C都外離時,.所以,當l1、l2與圓C“平行相交”時,b滿足,故實數(shù)b的取值范圍是(,)∪(,+∞)故選D.6、A【解析】根據(jù)零點存在定理及函數(shù)單調(diào)性可知,,解不等式組即可求得的取值范圍.【詳解】因為在上單調(diào)遞增,根據(jù)零點存在定理可得,解得.故選:A【點睛】本題考查了函數(shù)單調(diào)性的判斷,零點存在定理的應用,根據(jù)零點所在區(qū)間求參數(shù)的取值范圍,屬于基礎(chǔ)題.7、D【解析】根據(jù)函數(shù)奇偶性的概念,逐項判斷即可.【詳解】A中,由得,又,所以是偶函數(shù);B中,定義域為R,又,所以是偶函數(shù);C中,定義域為,又,所以是奇函數(shù);D中,定義域為R,且,所以非奇非偶.故選D【點睛】本題主要考查函數(shù)的奇偶性,熟記概念即可,屬于基礎(chǔ)題型.8、A【解析】直接判斷范圍,比較大小即可.【詳解】,,,故a>b>c.故選:A.9、B【解析】根據(jù)三角函數(shù)的定義求出,再根據(jù)二倍角余弦公式計算可得;【詳解】解:∵角的終邊過點,所以,∴,故故選:B10、B【解析】根據(jù)直觀圖畫出原圖,可得原圖形為直角梯形,計算該直角梯形的面積即可.【詳解】過點作,垂足為則由已知可得四邊形為矩形,為等腰直角三角形,根據(jù)直觀圖畫出原圖如下:可得原圖形為直角梯形,,且,可得原四邊形的面積為故選:B.11、B【解析】觀察在上的圖象,從而得到的取值范圍.【詳解】解:觀察在上的圖象,當時,或,當時,,∴的最小值為:,的最大值為:,∴的取值范圍是故選:B【點睛】本題考查余弦函數(shù)的定義域和值域,余弦函數(shù)的圖象,考查數(shù)形結(jié)合思想,屬基礎(chǔ)題12、C【解析】,所以,所以,所以是一條對稱軸故選C二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、①②【解析】對于①,將x=代入得是對稱軸,命題正確;對于②,由正切函數(shù)的圖象可知,命題正確;對于③,正弦函數(shù)在上是增函數(shù),但在第一象限不能說是增函數(shù),所以③不正確;對于④,,最大值為,不正確;故填①②.14、或2【解析】先討論范圍確定的單調(diào)性,再分別進行求解.【詳解】①當時,,得;②當時,,得,故或2故答案為:或2.15、【解析】根據(jù)冪函數(shù)的定義得到,代入點,得到的值,從而得到答案.【詳解】因為為冪函數(shù),所以,即代入點,得,即,所以,所以.故答案為:.16、4【解析】分析:直接利用基本不等式求xy的最大值.詳解:因為x+y=4,所以4≥,所以故答案為4.點睛:(1)本題主要考查基本不等式,意在考查學生對該基礎(chǔ)知識的掌握水平.(2)利用基本不等式求最值時,一定要注意“一正二定三相等”,三者缺一不可.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(Ⅰ)-18;(Ⅱ).【解析】(Ⅰ)在中由余弦定理得,從而得到三角形為等腰三角形,可得,由數(shù)量積的定義可得.(Ⅱ)根據(jù)所給的向量式可得點在的角平分線上,故可得,所以,因為,所以得到.設(shè)設(shè),則得到,,根據(jù)數(shù)量積的定義及運算率可得所求試題解析:(Ⅰ)在中,由余弦定理得,所以,所以是等腰三角形,且,所以,所以(Ⅱ)由,得,所以點在的角平分線上,又因為點是邊上的一點,所以由角平分線性質(zhì)定理得,所以.因為,所以.設(shè),則,由,得,所以,又,所以點睛:解題時注意在三角形中常見的向量與幾何特征的關(guān)系:(1)在中,若或,則點是的外心;(2)在中,若,則點是的重心;(3)在中,若,則直線一定過的重心;(4)在中,若,則點是的垂心;(5)在中,若,則直線通過的內(nèi)心.18、(1);(2),【解析】(1)利用已知條件和,可以求出函數(shù)的周期,利用是對稱軸和,可以求解出的值,從而完成解析式的求解;(2)先寫出函數(shù)經(jīng)過平移以后得到的函數(shù)解析式,然后再求解的遞減區(qū)間即可完成求解.【小問1詳解】由時,,知,∴,∵的圖象關(guān)于直線對稱,∴,,∵,∴,∴【小問2詳解】由題意知:由,,∴,,∴的單調(diào)遞減區(qū)間是,19、(1),;(2).【解析】(1)利用向量的線性運算即平面向量基本定理確定,與,的關(guān)系;(2)解法一:利用向量數(shù)量積運算公式求得向量夾角余弦值;解法二:建立平面直角坐標系,利用數(shù)量積的坐標表示確定向量夾角余弦值.【詳解】解法一:(1)由圖可知.因為E是CD的中點,所以.(2)因為,為等邊三角形,所以,,所以,所以,.設(shè)與的夾角為,則,所以在與夾角的余弦值為.解法二:(1)同解法一.(2)以A為原點,AD所在直線為x軸,過A且與AD垂直的直線為y軸建立平面直角坐標系,則,,,.因為E是CD的中點,所以,所以,,所以,.設(shè)與的夾角為,則,所以與夾角的余弦值為.【點睛】求兩個向量的數(shù)量積有三種方法:利用定義;利用向量的坐標運算;利用數(shù)量積的幾何意義.具體應用時可根據(jù)已知條件的特征來選擇,同時要注意數(shù)量積運算律的應用20、(1)(2)【解析】(1)根據(jù)已知條件聯(lián)立方程組求出,進而求出函數(shù)的解析式;(2)根據(jù)已知條件求出,進而得出不等式,利用換元法及一元二次不等式得出的范圍,再根據(jù)指數(shù)與對數(shù)互化解指數(shù)不等式即可.【小問1詳解】由,得,解得.所以的解析式為.【小問2詳解】由(2)知,,所以,由,得,即,令,則,解得或所以,即,解得.所以不等式的解集為.21、(1)見解析;(2)見解析.【解析】(1)只需證得,即可證得平面;(2)因為平面,平面,所以,即可證得平面,從而得證.試題解析:(1)在與中,因為,所以,又因為,所以在中,有,則.又因為平面,平面,所以平面.(2)因為平面,平面,所以.又因為,平面,平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030家居建材行業(yè)市場智能家居政策推動投資前景分析研究報告
- 2025-2030家居建材市場現(xiàn)狀供需關(guān)系分析及投資方向發(fā)展研究報告
- 2025-2030家居家具和建筑裝飾行業(yè)市場供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030家具設(shè)計行業(yè)市場分析產(chǎn)品創(chuàng)新及智能家居應用前景
- 2025-2030家具制造業(yè)競爭格局分析及智能家居產(chǎn)品系列研究
- 2025-2030頭孢克肟行業(yè)供需動態(tài)性分析與醫(yī)藥市場投資發(fā)展挑戰(zhàn)應對策略
- 2025-2030外匯交易行業(yè)市場供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030增材打印材料產(chǎn)業(yè)供需格局演變與資金投入科學規(guī)劃分析報告
- 2025-2030在線游戲行業(yè)市場競爭與發(fā)展投資策略
- 2025-2030土地托管行業(yè)市場深度調(diào)研及發(fā)展趨勢與投資前景研究報告
- 山東省濰坊市2023-2024學年高一上學期期末考試地理試題(含答案)
- 北京市海淀區(qū)2024-2025學年七年級上學期期末道德與法治試卷
- 市政道路照明維護方案
- 2025年大學《馬克思主義理論-馬克思主義發(fā)展史》考試備考試題及答案解析
- 2025年周口市學校教師隊伍“十五五”發(fā)展規(guī)劃
- 2025-2030律師事務(wù)所行業(yè)財稅政策影響與稅務(wù)籌劃分析
- 加油站安全操作規(guī)程及員工守則
- 噴泉施工組織方案范本
- DBJ51-T 5072-2023 四川省基坑工程施工安全技術(shù)標準
- 骨科護士長年終述職報告
- 制氧廠安全培訓知識課件
評論
0/150
提交評論