版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
./20XX中考數(shù)學(xué)專題復(fù)習(xí)第二十七講相似圖形[基礎(chǔ)知識(shí)回顧]成比例線段:1、線段的比:如果選用同一長(zhǎng)度的兩條線段AB,CD的長(zhǎng)度分別為m、n則這兩條線段的比就是它們的比,即:=2、比例線段:四條線段a、b、c、d如果=那么四條線段叫做同比例線段,簡(jiǎn)稱3、比例的基本性質(zhì):=<=>4、平行線分線段成比例定理:將平行線截兩條直線[名師提醒:1、表示兩條線段的比時(shí),必須示用相同的,在用了相同的前提下,兩條線段的比值與用的無(wú)關(guān)即比值沒有2、全分割:點(diǎn)C把線段AB分成兩條,線段AC和BC〔AC>BC如果那么稱線段AB被點(diǎn)C全分割A(yù)C與AB的比叫全比,即L=≈]二、相似三角形:1、定義:如果兩個(gè)三角形的各角對(duì)應(yīng)各邊對(duì)應(yīng)那么這兩個(gè)三角形相似2、性質(zhì):⑴相似三角形的對(duì)應(yīng)角對(duì)應(yīng)邊⑵相似三角形對(duì)應(yīng)點(diǎn)的比、對(duì)應(yīng)角平分線的比、對(duì)應(yīng)的比都等于⑶相似三角形周長(zhǎng)的比等于面積的比等于判定:⑴基本定理:平行于三角形一邊的直線和其它兩邊或兩線相交,三角形與原三角形相似⑵兩邊對(duì)應(yīng)且夾角的兩三角形相似⑶兩角的兩三角形相似⑷三組對(duì)應(yīng)邊的比的兩三角形相似[名師提醒:1、全等是相似比為的特殊相似2、根據(jù)相似三角形的性質(zhì)的特質(zhì)和判定,要證四條線段的比相等相等一般要先證判定方法中最常用的是三組對(duì)應(yīng)邊成比例的兩三角形相似多用在點(diǎn)三角形中]三、相似多邊形:1、定義:各角對(duì)應(yīng)各邊對(duì)應(yīng)的兩個(gè)多邊形叫做相似多邊形2、性質(zhì):⑴相似多邊形對(duì)應(yīng)角對(duì)應(yīng)邊⑵相似多邊形周長(zhǎng)的比等于面積的比等于[名師提醒:相似多邊形沒有專門的判定方法,判定兩多邊形相似多用在矩形中,一般用定義進(jìn)行判定]位似:1、定義:如果兩個(gè)圖形不僅是而且每組對(duì)應(yīng)點(diǎn)所在直線都經(jīng)過(guò)那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做這時(shí)相似比又稱為2、性質(zhì):位似圖形上任意一點(diǎn)到位似中心的距離之比都等于[名師提醒:1、位似圖形一定是圖形,但反之不成立,利用位似變換可以將一個(gè)圖形放大或2、在平面直角坐標(biāo)系中,如果位似是以原點(diǎn)為位似中心,相似比位r,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于或][典型例題解析]考點(diǎn)一:比例線段例1〔2012?XX如圖,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分線BD交AC于點(diǎn)D,則AD的長(zhǎng)是,cosA的值是.〔結(jié)果保留根號(hào)考點(diǎn):黃金分割;相似三角形的判定與性質(zhì);銳角三角函數(shù)的定義.分析:可以證明△ABC∽△BDC,設(shè)AD=x,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,即可列出方程,求得x的值;過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,則E為AB中點(diǎn),由余弦定義可求出cosA的值.解答:解:∵△ABC,AB=AC=1,∠A=36°,∴∠ABC=∠ACB==72°.∵BD是∠ABC的平分線,∴∠ABD=∠DBC=∠ABC=36°.∴∠A=∠DBC=36°,又∵∠C=∠C
∴△ABC∽△BDC,∴=,設(shè)AD=x,則BD=BC=x.則,解得:x=〔舍去或.故x=.如右圖,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,∵AD=BD,∴E為AB中點(diǎn),即AE=AB=.在Rt△AED中,cosA==.故答案是:;.點(diǎn)評(píng):△ABC、△BCD均為黃金三角形,利用相似關(guān)系可以求出線段之間的數(shù)量關(guān)系;在求cosA時(shí),注意構(gòu)造直角三角形,從而可以利用三角函數(shù)定義求解.對(duì)應(yīng)訓(xùn)練2.〔2012?XX如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點(diǎn)D,若AC=2,則AD的長(zhǎng)是〔A.B.C.D.考點(diǎn):黃金分割.分析:根據(jù)兩角對(duì)應(yīng)相等,判定兩個(gè)三角形相似.再用相似三角形對(duì)應(yīng)邊的比相等進(jìn)行計(jì)算求出BD的長(zhǎng).解答:解:∵∠A=∠DBC=36°,∠C公共,∴△ABC∽△BDC,且AD=BD=BC.設(shè)BD=x,則BC=x,CD=2-x.由于,∴.整理得:x2+2x-4=0,解方程得:x=-1±,∵x為正數(shù),∴x=-1+.故選C.點(diǎn)評(píng):本題考查的是相似三角形的判定與性質(zhì),先用兩角對(duì)應(yīng)相等判定兩個(gè)三角形相似,再用相似三角形的性質(zhì)對(duì)應(yīng)邊的比相等進(jìn)行計(jì)算求出BD的長(zhǎng).考點(diǎn)二:相似三角形的性質(zhì)及其應(yīng)用例2〔2012?XX已知△ABC∽△DEF,△ABC的周長(zhǎng)為3,△DEF的周長(zhǎng)為1,則ABC與△DEF的面積之比為.考點(diǎn):相似三角形的性質(zhì).專題:探究型.分析:先根據(jù)相似三角形的性質(zhì)求出其相似比,再根據(jù)面積的比等于相似比的平方進(jìn)行解答即可.解答:解:∵△ABC∽△DEF,△ABC的周長(zhǎng)為3,△DEF的周長(zhǎng)為1,∴三角形的相似比是3:1,∴△ABC與△DEF的面積之比為9:1.故答案為:9:1.點(diǎn)評(píng):本題考查的是相似三角形的性質(zhì),即相似三角形〔多邊形的周長(zhǎng)的比等于相似比;相似三角形的面積的比等于相似比的平方.對(duì)應(yīng)訓(xùn)練2.〔2012?XX已知△ABC∽△A′B′C′,相似比為3:4,△ABC的周長(zhǎng)為6,則△A′B′C′的周長(zhǎng)為.考點(diǎn):相似三角形的性質(zhì).專題:應(yīng)用題.分析:根據(jù)相似三角形周長(zhǎng)的比等于相似比計(jì)算即可得解.解答:解:∵△ABC∽△A′B′C′,∴△ABC的周長(zhǎng):△A′B′C′的周長(zhǎng)=3:4,∵△ABC的周長(zhǎng)為6,∴△A′B′C′的周長(zhǎng)=6×=8.故答案為:8.點(diǎn)評(píng):本題主要考查了相似三角形周長(zhǎng)的比等于相似比的性質(zhì),是基礎(chǔ)題,熟記性質(zhì)是解題的關(guān)鍵.考點(diǎn)三:相似三角形的判定方法及其應(yīng)用例3〔2012?XX如圖,在正方形ABCD中,E是CD的中點(diǎn),點(diǎn)F在BC上,且FC=BC.圖中相似三角形共有〔A.1對(duì) B.2對(duì) C.3對(duì) D.4對(duì)考點(diǎn):相似三角形的判定;正方形的性質(zhì).分析:首先由四邊形ABCD是正方形,得出∠D=∠C=90°,AD=DC=CB,又由DE=CE,FC=BC,證出△ADE∽△ECF,然后根據(jù)相似三角形的對(duì)應(yīng)邊成比例與相似三角形的對(duì)應(yīng)角相等,證明出△AEF∽△ADE,則可得△AEF∽△ADE∽△ECF,進(jìn)而可得出結(jié)論.解答:解:圖中相似三角形共有3對(duì).理由如下:∵四邊形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB,∵DE=CE,FC=BC,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,∴AE:EF=AD:EC,∠DAE=∠CEF,∴AE:EF=AD:DE,即AD:AE=DE:EF,∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.故選C.點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì),以及正方形的性質(zhì).此題難度適中,解題的關(guān)鍵是證明△ECF∽△ADE,在此基礎(chǔ)上可證△AEF∽△ADE.對(duì)應(yīng)訓(xùn)練3.〔2012?XX如圖,△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,BC、DE交于點(diǎn)O.則下列四個(gè)結(jié)論中,①∠1=∠2;②BC=DE;③△ABD∽△ACE;④A、O、C、E四點(diǎn)在同一個(gè)圓上,一定成立的有〔A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)考點(diǎn):相似三角形的判定;全等三角形的性質(zhì);圓周角定理.分析:由△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,根據(jù)全等三角形的性質(zhì),即可求得BC=DE,∠BAC=∠DAE,繼而可得∠1=∠2,則可判定①②正確;由△ABC≌△ADE,可得AB=AD,AC=AE,則可得AB:AC=AD:AE,根據(jù)有兩邊對(duì)應(yīng)成比例且夾角相等三角形相似,即可判定③正確;易證得△AEF∽△DCF與△AOF∽△CEF,繼而可得∠OAC+∠OCE=180°,即可判定A、O、C、E四點(diǎn)在同一個(gè)圓上.解答:解:∵△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,∴∠BAC=∠DAE,BC=DE,故②正確;∴∠BAC-∠DAC=∠DAE-∠DAC,即∠1=∠2,故①正確;∵△ABC≌△ADE,∴AB=AD,AC=AE,∴,∵∠1=∠2,∴△ABD∽△ACE,故③正確;∵∠ACB=∠AEF,∠AFE=∠OFC,∴△AFE∽△OFC,∴,∠2=∠FOC,即,∵∠AFO=∠EFC,∴△AFO∽△EFC,∴∠FAO=∠FEC,∴∠EAO+∠ECO=∠2+∠FAO+∠ECO=∠FOC+∠FEC+∠ECO=180°,∴A、O、C、E四點(diǎn)在同一個(gè)圓上,故④正確.故選D.點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、全等三角形的性質(zhì)以及四點(diǎn)共圓的知識(shí).此題難度較大,注意數(shù)形結(jié)合思想的應(yīng)用,注意找到相似三角形是解此題的關(guān)鍵.考點(diǎn)四:位似例5〔2012?XX如圖,正方形ABCD的兩邊BC,AB分別在平面直角坐標(biāo)系的x軸、y軸的正半軸上,正方形A′B′C′D′與正方形ABCD是以AC的中點(diǎn)O′為中心的位似圖形,已知AC=3,若點(diǎn)A′的坐標(biāo)為〔1,2,則正方形A′B′C′D′與正方形ABCD的相似比是〔A.B.C.D.考點(diǎn):位似變換;坐標(biāo)與圖形性質(zhì).分析:延長(zhǎng)A′B′交BC于點(diǎn)E,根據(jù)大正方形的對(duì)角線長(zhǎng)求得其邊長(zhǎng),然后求得小正方形的邊長(zhǎng)后即可求兩個(gè)正方形的相似比.解答:解:∵在正方形ABCD中,AC=3∴BC=AB=3,延長(zhǎng)A′B′交BC于點(diǎn)E,∵點(diǎn)A′的坐標(biāo)為〔1,2,∴OE=1,EC=A′E=3-1=2,∴正方形A′B′C′D′的邊長(zhǎng)為1,∴正方形A′B′C′D′與正方形ABCD的相似比是.故選B.點(diǎn)評(píng):本題考查了位似變換和坐標(biāo)與圖形的變化的知識(shí),解題的關(guān)鍵是根據(jù)已知條件求得兩個(gè)正方形的邊長(zhǎng).對(duì)應(yīng)訓(xùn)練5.〔2012?XX如圖,正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為1:,點(diǎn)A的坐標(biāo)為〔1,0,則E點(diǎn)的坐標(biāo)為〔A.〔,0B.〔C.D.考點(diǎn):位似變換;坐標(biāo)與圖形性質(zhì).分析:由題意可得OA:OD=1:,又由點(diǎn)A的坐標(biāo)為〔1,0,即可求得OD的長(zhǎng),又由正方形的性質(zhì),即可求得E點(diǎn)的坐標(biāo).解答:解:∵正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為1:,∴OA:OD=1:,∵點(diǎn)A的坐標(biāo)為〔1,0,即OA=1,∴OD=,∵四邊形ODEF是正方形,∴DE=OD=.∴E點(diǎn)的坐標(biāo)為:〔,.故選C.點(diǎn)評(píng):此題考查了位似變換的性質(zhì)與正方形的性質(zhì).此題比較簡(jiǎn)單,注意理解位似變換與相似比的定義是解此題的關(guān)鍵.[聚焦XX中考]1.〔2012?濰坊已知矩形ABCD中,AB=1,在BC上取一點(diǎn)E,沿AE將△ABE向上折疊,使B點(diǎn)落在AD上的F點(diǎn),若四邊形EFDC與矩形ABCD相似,則AD=〔A. B. C. D.2考點(diǎn):相似多邊形的性質(zhì);翻折變換〔折疊問題.分析:可設(shè)AD=x,根據(jù)四邊形EFDC與矩形ABCD相似,可得比例式,求解即可.解答:解:∵AB=1,設(shè)AD=x,則FD=x-1,FE=1,∵四邊形EFDC與矩形ABCD相似,∴,,解得x1=,x2=〔負(fù)值舍去,經(jīng)檢驗(yàn)x1=是原方程的解.故選B.點(diǎn)評(píng):考查了翻折變換〔折疊問題,相似多邊形的性質(zhì),本題的關(guān)鍵是根據(jù)四邊形EFDC與矩形ABCD相似得到比例式.2.〔2012?東營(yíng)如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊OA在x軸上,OC在y軸上,如果矩形OA′B′C′與矩形OABC關(guān)于點(diǎn)O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點(diǎn)B′的坐標(biāo)是〔A.〔-2,3 B.〔2,-3 C.〔3,-2或〔-2,3 D.〔-2,3或〔2,-3考點(diǎn):相似多邊形的性質(zhì);坐標(biāo)與圖形性質(zhì).分析:由矩形OA′B′C′與矩形OABC關(guān)于點(diǎn)O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,利用相似三角形的面積比等于相似比的平方,即可求得矩形OA′B′C′與矩形OABC的位似比為1:2,又由點(diǎn)B的坐標(biāo)為〔-4,6,即可求得答案.解答:解:∵矩形OA′B′C′與矩形OABC關(guān)于點(diǎn)O位似,∴矩形OA′B′C′∽矩形OABC,∵矩形OA′B′C′的面積等于矩形OABC面積的,∴位似比為:1:2,∵點(diǎn)B的坐標(biāo)為〔-4,6,∴點(diǎn)B′的坐標(biāo)是:〔-2,3或〔2,-3.故選D.點(diǎn)評(píng):此題考查了位似圖形的性質(zhì).此題難度不大,注意位似圖形是特殊的相似圖形,注意掌握相似三角形的面積比等于相似比的平方定理的應(yīng)用,注意數(shù)形結(jié)合思想的應(yīng)用.3.〔2012?日照在菱形ABCD中,E是BC邊上的點(diǎn),連接AE交BD于點(diǎn)F,若EC=2BE,則的值是〔A.B.C.D.考點(diǎn):相似三角形的判定與性質(zhì);菱形的性質(zhì).分析:根據(jù)菱形的對(duì)邊平行且相等的性質(zhì),判斷△BEF∽△DAF,得出=,再根據(jù)BE與BC的數(shù)量關(guān)系求比值.解答:解:如圖,∵在菱形ABCD中,AD∥BC,且AD=BC,∴△BEF∽△DAF,∴=,又∵EC=2BE,∴BC=3BE,即AD=3BE,∴==,故選B.點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì),菱形的性質(zhì).關(guān)鍵是由平行線得出相似三角形,由菱形的性質(zhì)得出線段的長(zhǎng)度關(guān)系.4.〔2012?XX為了測(cè)量被池塘隔開的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖圖形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同學(xué)分別測(cè)量出以下四組數(shù)據(jù):①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根據(jù)所測(cè)數(shù)據(jù),求出A,B間距離的有〔A.1組 B.2組 C.3組 D.4組F考點(diǎn):相似三角形的應(yīng)用;解直角三角形的應(yīng)用.分析:根據(jù)三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性質(zhì),根據(jù)即可解答.解答:解:此題比較綜合,要多方面考慮,①因?yàn)橹馈螦CB和BC的長(zhǎng),所以可利用∠ACB的正切來(lái)求AB的長(zhǎng);②可利用∠ACB和∠ADB的正切求出AB;③,因?yàn)椤鰽BD∽△EFD可利用,求出AB;④無(wú)法求出A,B間距離.故共有3組可以求出A,B間距離.故選C.點(diǎn)評(píng):本題考查相似三角形的應(yīng)用和解直角三角形的應(yīng)用,解答道題的關(guān)鍵是將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,本題只要把實(shí)際問題抽象到相似三角形,解直角三角形即可求出.5.〔2012?威海如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為〔4,0,〔8,2,〔6,4.已知△A1B1C1的兩個(gè)頂點(diǎn)的坐標(biāo)為〔1,3,〔2,5,若△ABC與△A1B1C1位似,則△A1B1C1的第三個(gè)頂點(diǎn)的坐標(biāo)為.考點(diǎn):位似變換;坐標(biāo)與圖形性質(zhì).分析:首先由題意可求得直線AC、AB、BC的解析式與過(guò)點(diǎn)〔1,3,〔2,5的直線的解析式,即可知過(guò)這兩點(diǎn)的直線與直線AC平行,則可分別從①若A的對(duì)應(yīng)點(diǎn)為A1〔1,3,C的對(duì)應(yīng)點(diǎn)為C1〔2,5與②若C的對(duì)應(yīng)點(diǎn)為A1〔1,3,A的對(duì)應(yīng)點(diǎn)為C1〔2,5去分析求解,即可求得答案.解答:解:設(shè)直線AC的解析式為:y=kx+b,∵△ABC的頂點(diǎn)坐標(biāo)分別為〔4,0,〔8,2,〔6,4,∴,解得:,∴直線AC的解析式為:y=2x-8,同理可得:直線AB的解析式為:y=x-2,直線BC的解析式為:y=-x+10,∵△A1B1C1的兩個(gè)頂點(diǎn)的坐標(biāo)為〔1,3,〔2,5,∴過(guò)這兩點(diǎn)的直線為:y=2x+1,∴過(guò)這兩點(diǎn)的直線與直線AC平行,①若A的對(duì)應(yīng)點(diǎn)為A1〔1,3,C的對(duì)應(yīng)點(diǎn)為C1〔2,5,則B1C1∥BC,B1A1∥BA,設(shè)直線B1C1的解析式為y=-x+a,直線B1A1的解析式為y=x+b,∴-2+a=5,+b=3,解得:a=7,b=,∴直線B1C1的解析式為y=-x+7,直線B1A1的解析式為y=x+,則直線B1C1與直線B1A1的交點(diǎn)為:〔3,4;②若C的對(duì)應(yīng)點(diǎn)為A1〔1,3,A的對(duì)應(yīng)點(diǎn)為C1〔2,5,則B1A1∥BC,B1C1∥BA,設(shè)直線B1C1的解析式為y=x+c,直線B1A1的解析式為y=-x+d,∴×2+c=5,-1+d=3,解得:c=4,d=4,∴直線B1C1的解析式為y=x+4,直線B1A1的解析式為y=-x+4,則直線B1C1與直線B1A1的交點(diǎn)為:〔0,4.∴△A1B1C1的第三個(gè)頂點(diǎn)的坐標(biāo)為〔3,4或〔0,4.故答案為:〔3,4或〔0,4.點(diǎn)評(píng):此題考查了位似圖形的性質(zhì).此題難度適中,注意掌握位似圖形的對(duì)應(yīng)線段互相平行,注意掌握待定系數(shù)法求一次函數(shù)解析式的知識(shí),注意分類討論思想與數(shù)形結(jié)合思想的應(yīng)用.[備考真題過(guò)關(guān)]一、選擇題1.〔2012?涼山州已知,則的值是〔A.B.C.D.考點(diǎn):比例的性質(zhì).分析:先設(shè)出b=5k,得出a=13k,再把a(bǔ),b的值代入即可求出答案.解答:解:令a,b分別等于13和5,∵,∴a=13,∴=;故選D.點(diǎn)評(píng):此題考查了比例的性質(zhì).此題比較簡(jiǎn)單,解題的關(guān)鍵是注意掌握比例的性質(zhì)與比例變形.2.〔2012?天門如圖,△ABC為等邊三角形,點(diǎn)E在BA的延長(zhǎng)線上,點(diǎn)D在BC邊上,且ED=EC.若△ABC的邊長(zhǎng)為4,AE=2,則BD的長(zhǎng)為〔A.2B.3C.D.考點(diǎn):平行線分線段成比例;等腰三角形的性質(zhì);等邊三角形的性質(zhì).分析:延長(zhǎng)BC至F點(diǎn),使得CF=BD,證得△EBD≌△EFC后即可證得∠B=∠F,然后證得AC∥EF,利用平行線分線段成比例定理證得CF=EA后即可求得BD的長(zhǎng).解答:解:延長(zhǎng)BC至F點(diǎn),使得CF=BD,∵ED=EC
∴∠EDB=∠ECF
∴△EBD≌△EFC
∴∠B=∠F
∵△ABC是等邊三角形,∴∠B=∠ACB
∴∠ACB=∠F
∴AC∥EF
∴AE=CF=2
∴BD=AE=CF=2
故選A.點(diǎn)評(píng):本題考查了等腰三角形及等邊三角形的性質(zhì),解題的關(guān)鍵是正確的作出輔助線.3.〔2012?XX如圖,在矩形ABCD中,AB=2,BC=3,點(diǎn)E、F、G、H分別在矩形ABCD的各邊上,EF∥AC∥HG,EH∥BD∥FG,則四邊形EFGH的周長(zhǎng)是〔A.B.C.D.考點(diǎn):平行線分線段成比例;勾股定理;矩形的性質(zhì).分析:根據(jù)矩形的對(duì)角線相等,利用勾股定理求出對(duì)角線的長(zhǎng)度,然后根據(jù)平行線分線段成比例定理列式表示出EF、EH的長(zhǎng)度之和,再根據(jù)四邊形EFGH是平行四邊形,即可得解.解答:解:在矩形ABCD中,AB=2,BC=3,根據(jù)勾股定理,AC=BD=,∵EF∥AC∥HG,∴,∵EH∥BD∥FG,∴,∴=1,∴EF+EH=AC=,∵EF∥HG,EH∥FG,∴四邊形EFGH是平行四邊形,∴四邊形EFGH的周長(zhǎng)=2〔EF+EH=2.故選D.點(diǎn)評(píng):本題考查了平行線分線段成比例定理,矩形的對(duì)角線相等,勾股定理,根據(jù)平行線分線段成比例定理求出1是解題的關(guān)鍵,也是本題的難點(diǎn).4.〔2012?XX小張用手機(jī)拍攝得到甲圖,經(jīng)放大后得到乙圖,甲圖中的線段AB在乙圖中的對(duì)應(yīng)線段是〔A.FG B.FH C.EH D.EF考點(diǎn):相似圖形.分析:觀察圖形,先找出對(duì)應(yīng)頂點(diǎn),再根據(jù)對(duì)應(yīng)頂點(diǎn)的連線即為對(duì)應(yīng)線段解答.解答:解:由圖可知,點(diǎn)A、E是對(duì)應(yīng)頂點(diǎn),點(diǎn)B、F是對(duì)應(yīng)頂點(diǎn),點(diǎn)D、H是對(duì)應(yīng)頂點(diǎn),所以,甲圖中的線段AB在乙圖中的對(duì)應(yīng)線段是EF.故選D.點(diǎn)評(píng):本題考查了相似圖形,根據(jù)對(duì)應(yīng)點(diǎn)確定對(duì)應(yīng)線段,所以確定出對(duì)應(yīng)點(diǎn)是解題的關(guān)鍵.5.〔2012?XX地區(qū)如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,則下列結(jié)論正確的是〔A.∠E=2∠KB.BC=2HIC.六邊形ABCDEF的周長(zhǎng)=六邊形GHIJKL的周長(zhǎng)D.S六邊形ABCDEF=2S六邊形GHIJKL考點(diǎn):相似多邊形的性質(zhì).專題:探究型.分析:根據(jù)相似多邊形的性質(zhì)對(duì)各選項(xiàng)進(jìn)行逐一分析即可.解答:解:A、∵六邊形ABCDEF∽六邊形GHIJKL,∴∠E=∠K,故本選項(xiàng)錯(cuò)誤;
B、∵六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,∴BC=2HI,故本選項(xiàng)正確;
C、∵六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,∴六邊形ABCDEF的周長(zhǎng)=六邊形GHIJKL的周長(zhǎng)×2,故本選項(xiàng)錯(cuò)誤;
D、∵六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,∴S六邊形ABCDEF=4S六邊形GHIJKL,故本選項(xiàng)錯(cuò)誤.故選B.點(diǎn)評(píng):本題考查的是相似多邊形的性質(zhì),即兩個(gè)相似多邊形的對(duì)應(yīng)角相等,周長(zhǎng)的比等于相似比,面積的比等于相似比的平方.6.〔2012?荊州下列4×4的正方形網(wǎng)格中,小正方形的邊長(zhǎng)均為1,三角形的頂點(diǎn)都在格點(diǎn)上,則與△ABC相似的三角形所在的網(wǎng)格圖形是〔A. B. C. D.考點(diǎn):相似三角形的判定.專題:網(wǎng)格型.分析:根據(jù)勾股定理求出△ABC的三邊,并求出三邊之比,然后根據(jù)網(wǎng)格結(jié)構(gòu)利用勾股定理求出三角形的三邊之比,再根據(jù)三邊對(duì)應(yīng)成比例,兩三角形相似選擇答案.解答:解:根據(jù)勾股定理,AB==2,
BC==,
AC=,所以△ABC的三邊之比為:2:=1:2:,
A、三角形的三邊分別為2,,=3,三邊之比為2::3=::3,故本選項(xiàng)錯(cuò)誤;
B、三角形的三邊分別為2,4,=2,三邊之比為2:4:2=1:2:,故本選項(xiàng)正確;
C、三角形的三邊分別為2,3,=,三邊之比為2:3:,故本選項(xiàng)錯(cuò)誤;
D、三角形的三邊分別為=,=,4,三邊之比為::4,故本選項(xiàng)錯(cuò)誤.故選B.點(diǎn)評(píng):本題主要考查了相似三角形的判定與網(wǎng)格結(jié)構(gòu)的知識(shí),根據(jù)網(wǎng)格結(jié)構(gòu)分別求出各三角形的三條邊的長(zhǎng),并求出三邊之比是解題的關(guān)鍵.7.〔2012?XX如圖,點(diǎn)D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個(gè)條件,不正確的是〔A.∠ABD=∠CB.∠ADB=∠ABCC.D.考點(diǎn):相似三角形的判定.分析:由∠A是公共角,利用有兩角對(duì)應(yīng)相等的三角形相似,即可得A與B正確;又由兩組對(duì)應(yīng)邊的比相等且夾角對(duì)應(yīng)相等的兩個(gè)三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應(yīng)用.解答:解:∵∠A是公共角,∴當(dāng)∠ABD=∠C或∠ADB=∠ABC時(shí),△ADB∽△ABC〔有兩角對(duì)應(yīng)相等的三角形相似;故A與B正確;當(dāng)時(shí),△ADB∽△ABC〔兩組對(duì)應(yīng)邊的比相等且夾角對(duì)應(yīng)相等的兩個(gè)三角形相似;故D正確;當(dāng)時(shí),∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯(cuò)誤.故選C.點(diǎn)評(píng):此題考查了相似三角形的判定.此題難度不大,注意掌握有兩角對(duì)應(yīng)相等的三角形相似與兩組對(duì)應(yīng)邊的比相等且夾角對(duì)應(yīng)相等的兩個(gè)三角形相似定理的應(yīng)用8.〔2012?XX如圖,在△ABC中,EF∥BC,,S四邊形BCFE=8,則S△ABC=〔A.9 B.10 C.12 D.13考點(diǎn):相似三角形的判定與性質(zhì).專題:計(jì)算題.分析:求出的值,推出△AEF∽△ABC,得出,把S四邊形BCFE=8代入求出即可.解答:解:∵,∴=,∵EF∥BC,∴△AEF∽△ABC,∴,∴9S△AEF=S△ABC,∵S四邊形BCFE=8,∴9〔S△ABC-8=S△ABC,解得:S△ABC=9.故選A.點(diǎn)評(píng):本題考查了相似三角形的性質(zhì)和判定的應(yīng)用,注意:相似三角形的面積比等于相似比的平方,題型較好,但是一道比較容易出錯(cuò)的題目.9.〔2012?XX如圖,在四邊形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,點(diǎn)E、F分別為AB、AD的中點(diǎn),則△AEF與多邊形BCDFE的面積之比為〔A.B.C.D.考點(diǎn):相似三角形的判定與性質(zhì);三角形的面積;三角形中位線定理.分析:根據(jù)三角形的中位線求出EF=BD,EF∥BD,推出△AEF∽△ABD,得出,求出,即可求出△AEF與多邊形BCDFE的面積之比.解答:解:連接BD,∵F、E分別為AD、AB中點(diǎn),∴EF=BD,EF∥BD,∴△AEF∽△ABD,∴,∴△AEF的面積:四邊形EFDB的面積=1:3,∵CD=AB,CB⊥DC,AB∥CD,∴,∴△AEF與多邊形BCDFE的面積之比為1:〔1+4=1:5,故選C.點(diǎn)評(píng):本題考查了三角形的面積,三角形的中位線等知識(shí)點(diǎn)的應(yīng)用,主要考查學(xué)生運(yùn)用性質(zhì)進(jìn)行推理和計(jì)算的能力,題目比較典型,難度適中.10.〔2012?XX圖中兩個(gè)四邊形是位似圖形,它們的位似中心是〔A.點(diǎn)M B.點(diǎn)N C.點(diǎn)O D.點(diǎn)P考點(diǎn):位似變換.專題:網(wǎng)格型.分析:根據(jù)位似變換的定義:對(duì)應(yīng)點(diǎn)的連線交于一點(diǎn),交點(diǎn)就是位似中心.即位似中心一定在對(duì)應(yīng)點(diǎn)的連線上.解答:解:點(diǎn)P在對(duì)應(yīng)點(diǎn)M和點(diǎn)N所在直線上,故選:D.點(diǎn)評(píng):此題主要考查了位似圖形的概念,根據(jù)位似圖形的位似中心位于對(duì)應(yīng)點(diǎn)連線所在的直線上得出是解題關(guān)鍵.二、填空題12.〔2012?宿遷如圖,已知P是線段AB的黃金分割點(diǎn),且PA>PB,若S1表示PA為一邊的正方形的面積,S2表示長(zhǎng)是AB,寬是PB的矩形的面積,則S1S2.〔填">""="或"<"考點(diǎn):黃金分割.分析:根據(jù)黃金分割的定義得到PA2=PB?AB,再利用正方形和矩形的面積公式有S1=PA2,S2=PB?AB,即可得到S1=S2.解答:解:∵P是線段AB的黃金分割點(diǎn),且PA>PB,∴PA2=PB?AB,又∵S1表示PA為一邊的正方形的面積,S2表示長(zhǎng)是AB,寬是PB的矩形的面積,∴S1=PA2,S2=PB?AB,∴S1=S2.故答案為=.點(diǎn)評(píng):本題考查了黃金分割的定義:一個(gè)點(diǎn)把一條線段分成較長(zhǎng)線段和較短線段,并且較長(zhǎng)線段是較短線段和整個(gè)線段的比例中項(xiàng),那么就說(shuō)這個(gè)點(diǎn)把這條線段黃金分割,這個(gè)點(diǎn)叫這條線段的黃金分割點(diǎn).14.〔2012?XX正方形ABCD的邊長(zhǎng)為1cm,M、N分別是BC、CD上兩個(gè)動(dòng)點(diǎn),且始終保持AM⊥MN,當(dāng)BM=cm時(shí),四邊形ABCN的面積最大,最大面積為cm2.考點(diǎn):相似三角形的判定與性質(zhì);二次函數(shù)的最值;正方形的性質(zhì).分析:設(shè)BM=xcm,則MC=1-xcm,當(dāng)AM⊥MN時(shí),利用互余關(guān)系可證△ABM∽△MCN,利用相似比求CN,根據(jù)梯形的面積公式表示四邊形ABCN的面積,用二次函數(shù)的性質(zhì)求面積的最大值.解答:解:設(shè)BM=xcm,則MC=1-xcm,∵∠AMN=90°,∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=90°-∠NMC=∠MNC,∴△ABM∽△MCN,則,即,解得CN=,∴S四邊形ABCN=×1×[1+x〔1-x]=-x2+x+,∵-<0,∴當(dāng)x=-cm時(shí),S四邊形ABCN最大,最大值是-×〔2+×+=cm2.故答案是:,.點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì)的運(yùn)用.關(guān)鍵是根據(jù)已知條件判斷相似三角形,利用相似比求函數(shù)關(guān)系式.15.〔2012?資陽(yáng)如圖,O為矩形ABCD的中心,M為BC邊上一點(diǎn),N為DC邊上一點(diǎn),ON⊥OM,若AB=6,AD=4,設(shè)OM=x,ON=y,則y與x的函數(shù)關(guān)系式為??键c(diǎn):相似三角形的判定與性質(zhì);矩形的性質(zhì).分析:求兩條線段的關(guān)系,把兩條線段放到兩個(gè)三角形中,利用兩個(gè)三角形的關(guān)系求解.解答:解:如圖,作OF⊥BC于F,OE⊥CD于E,∵ABCD為矩形∴∠C=90°
∵OF⊥BC,OE⊥CD
∴∠EOF=90°
∴∠EON+∠FON=90°
∵ON⊥OM
∴∠EON=∠FOM
∴△OEN∽△OFM
∵O為中心∴,
∴,即y=x,故答案為:y=x,點(diǎn)評(píng):此題主要考查的是相似三角形的判定與性質(zhì),解題的關(guān)鍵是合理的在圖中作出輔助線,熟練掌握相似三角形的判定定理和性質(zhì).16.〔2012?XX如圖,E是?ABCD的邊CD上一點(diǎn),連接AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F,且AD=4,,則CF的長(zhǎng)為.考點(diǎn):相似三角形的判定與性質(zhì);平行四邊形的性質(zhì).分析:由四邊形ABCD是平行四邊形,即可得BC=AD=4,AB∥CD,繼而可證得△FEC∽△FAB,由相似三角形的對(duì)應(yīng)邊成比例,即可求得答案.解答:解:∵四邊形ABCD是平行四邊形,∴BC=AD=4,AB∥CD,∴△FEC∽△FAB,∴,∴,∴CF=BC=×4=2.故答案為:2.點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)以及平行四邊形的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.18.〔2012?XX如圖,利用標(biāo)桿BE測(cè)量建筑物的高度,標(biāo)桿BE高1.5m,測(cè)得AB=2m,BC=14cm,則樓高CD為m.考點(diǎn):相似三角形的應(yīng)用.專題:應(yīng)用題.分析:先根據(jù)題意得出△ABE∽△ACD,再根據(jù)相似三角形的對(duì)應(yīng)邊成比例即可求出CD的值.解答:解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴,∵BE=1.5,AB=2,BC=14,∴AC=16,∴,∴CD=12.故答案為:12.點(diǎn)評(píng):本題考查的是相似三角形的應(yīng)用,熟知相似三角形的對(duì)應(yīng)邊成比例的性質(zhì)是解答此題的關(guān)鍵.19.〔2012?XX如圖,在一場(chǎng)羽毛球比賽中,站在場(chǎng)內(nèi)M處的運(yùn)動(dòng)員林丹把球從N點(diǎn)擊到了對(duì)方內(nèi)的B點(diǎn),已知網(wǎng)高OA=1.52米,OB=4米,OM=5米,則林丹起跳后擊球點(diǎn)N離地面的距離NM=米.考點(diǎn):相似三角形的應(yīng)用.分析:首先根據(jù)題意易得△ABO∽△NAM,然后根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得答案.解答:解:根據(jù)題意得:AO⊥BM,NM⊥BM,∴AO∥NM,∴△ABO∽△NBM,∴,∵OA=1.52米,OB=4米,OM=5米,∴BM=OB+OM=4+5=9〔米,∴,解得:NM=3.42〔米,∴林丹起跳后擊球點(diǎn)N離地面的距離NM為3.42米.故答案為:3.42.點(diǎn)評(píng):此題考查了相似三角形的應(yīng)用.此題比較簡(jiǎn)單,注意掌握相似三角形的對(duì)應(yīng)邊成比例定理的應(yīng)用,注意把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題求解.20.〔2012?北京如圖,小明同學(xué)用自制的直角三角形紙板DEF測(cè)量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上.已知紙板的兩條直角邊DE=40cm,EF=20cm,測(cè)得邊DF離地面的高度AC=1.5m,CD=8m,則樹高AB=m.考點(diǎn):相似三角形的應(yīng)用.分析:利用直角三角形DEF和直角三角形BCD相似求得BC的長(zhǎng)后加上小明同學(xué)的身高即可求得樹高AB.解答:解:∵∠DEF=∠BCD=90°∠D=∠D
∴△DEF∽△DCB
∴,
∵DE=40cm=0.4m,EF=20cm=0.2m,AC=1.5m,CD=8m,∴,
∴BC=4,∴AB=AC+BC=1.5+4=5.5米,故答案為5.5點(diǎn)評(píng):本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是從實(shí)際問題中整理出相似三角形的模型.21.〔2012?XX如圖,△ABC與△A1B1C1為位似圖形,點(diǎn)O是它們的位似中心,位似比是1:2,已知△ABC的面積為3,那么△A1B1C1的面積是.考點(diǎn):位似變換.分析:由△ABC與△A1B1C1為位似圖形,位似比是1:2,即可得△ABC與△A1B1C1為相似三角形,且相似比為1:2,又由相似三角形面積的比等于相似比的平方,即可求得答案.解答:解:∵△ABC與△A1B1C1為位似圖形,∴△ABC∽△A1B1C1,∵位似比是1:2,∴相似比是1:2,∴△ABC與△A1B1C1的面積比為:1:4,∵△ABC的面積為3,∴△A1B1C1的面積是:3×4=12.故答案為:12.點(diǎn)評(píng):此題考查了位似圖形的性質(zhì).注意位似圖形是相似圖形的特殊情況,注意相似三角形面積的比等于相似比的平方定理的應(yīng)用.三、解答題22.〔2012?上海己知:如圖,在菱形ABCD中,點(diǎn)E、F分別在邊BC、CD,∠BAF=∠DAE,AE與BD交于點(diǎn)G.〔1求證:BE=DF;〔2當(dāng)時(shí),求證:四邊形BEFG是平行四邊形.考點(diǎn):平行線分線段成比例;全等三角形的判定與性質(zhì);平行四邊形的判定;菱形的性質(zhì).專題:證明題.分析:〔1證得△ABF與△AFD全等后即可證得結(jié)論;〔2利用得到,從而根據(jù)平行線分線段成比例定理證得FG∥BC,進(jìn)而得到∠DGF=∠DBC=∠BDC,最后證得BE=GF,利用一組對(duì)邊平行且相等即可判定平行四邊形.解答:證明:〔1∵四邊形ABCD是菱形,∴AB=AD,∠ABC=∠ADF,∵∠BAF
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年招商銀行廣州分行社會(huì)招聘?jìng)淇碱}庫(kù)及參考答案詳解1套
- 2025年浙江大學(xué)中國(guó)農(nóng)村發(fā)展研究院招聘?jìng)淇碱}庫(kù)及完整答案詳解一套
- 2026年交通銀行交銀金融科技秋季校園招聘?jìng)淇碱}庫(kù)及參考答案詳解1套
- 按期交貨合同范本
- 國(guó)內(nèi)獨(dú)家合同范本
- 商場(chǎng)出兌合同范本
- 垃圾挖運(yùn)合同范本
- 搞笑的借款協(xié)議書
- 墓園殯葬合同范本
- 墻繪公益合同范本
- 2025年10月自考04184線性代數(shù)經(jīng)管類試題及答案含評(píng)分參考
- 國(guó)開2025年秋《心理學(xué)》形成性考核練習(xí)1-6答案
- 科技研發(fā)項(xiàng)目管理辦法
- 2023高效制冷機(jī)房系統(tǒng)應(yīng)用技術(shù)規(guī)程
- 第十一章靈巧彈藥
- 電力工程公司積成績(jī)效考核管理體系制度規(guī)定
- 銀行IT服務(wù)管理事件管理流程概要設(shè)計(jì)
- 地圖文化第三講古代測(cè)繪課件
- LY/T 2230-2013人造板防霉性能評(píng)價(jià)
- GB/T 34891-2017滾動(dòng)軸承高碳鉻軸承鋼零件熱處理技術(shù)條件
- 突發(fā)公共衛(wèi)生事件處置記錄表
評(píng)論
0/150
提交評(píng)論