版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Derivatives
CFA二級(jí)培訓(xùn)項(xiàng)目
1-181
Reading37
PricingandValuationofForwardCommitments
2-181
Case:DonaldTroubadour
DonaldTroubadourisaderivativestraderforSouthernShores
Investments.Thefirmseeksarbitrageopportunitiesintheforwardand
futuresmarketsusingthecarryarbitragemodel.
Troubadouridentifiesanarbitrageopportunityrelatingtoafixed-
incomefuturescontractanditsunderlyingbond.Currentdataonthe
futurescontractandunderlyingbondarepresentedinExhibit1.The
currentannualcompoundedrisk-freerateis0.30%.
3-181
Case:DonaldTroubadour
Exhibit1CurrentDataforFuturesandUnderlyingBond
FuturesContract
UnderlyingBond
Quotedfuturesprice
125.00
0.90
Quotedbondprice
112.00
0.08
Accruedinterestsincelast
couponpayment
Conversionfactor
Timeremainingto
contractexpiration
Three
Accruedinterestatfutures
0.20
monthscontractexpiration
Accruedinterestover
lifeoffuturescontract
0.00
Troubadournextgathersinformationonthreeexistingpositions.
4-181
Case:DonaldTroubadour
Position1(Nikkei225FuturesContract):
TroubadourholdsalongpositioninaNikkei225futurescontractthat
hasaremainingmaturityofthreemonths.Thecontinuously
compoundeddividendyieldontheNikkei225StockIndexis1.1%,
andthecurrentstockindexlevelis16,080.Thecontinuously
compoundedannualinterestrateis0.2996%.
Position2(Euro/JGBForwardContract):
Onemonthago,Troubadourpurchasedeuro/yenforwardcontracts
withthreemonthstoexpirationataquotedpriceof100.20(quotedas
apercentageofpar).Thecontractnotionalamountis¥100,000,000.
Thecurrentforwardpriceis100.05.
5-181
Case:DonaldTroubadour
Position3(JPYIUSDCurrencyForwardContract):
Troubadourholdsashortpositioninayen/USdollarforwardcontract
withanotionalvalueof$1,000,000.Atcontractinitiation,theforward
ratewas¥112.10per$1.Theforwardcontractexpiresinthreemonths.
Thecurrentspotexchangerateis¥112.00per$1,andtheannually
compoundedrisk-freeratesare-0.20%fortheyenand0.30%forthe
USdollar.Thecurrentquotedpriceoftheforwardcontractisequalto
theno-arbitrageprice.
TroubadournextconsidersanequityforwardcontractforTexasSteel,
Inc.(TSI).InformationregardingTSIcommonsharesandaTSIequity
forwardcontractispresentedinExhibit2.
6-181
Case:DonaldTroubadour
Exhibit2SelectedInformationforTSI
ThepricepershareofTSI’scommonshareis$250.
Theforwardpricepershareforanine-monthTSIequityforward
contractis$250.562289.
Assumeannualcompounding.
TroubadourtakesashortpositionintheTSIequityforwardcontract.
Hissupervisorasks,"Underwhichscenariowouldourposition
experiencealoss?“Threemonthsaftercontractinitiation,Troubadour
gathersinformationonTSIandtherisk-freerate,whichispresentedin
Exhibit3.
7-181
Case:DonaldTroubadour
Exhibit3SelectedDataonTSIandtheRisk-FreeRate
ThepricepershareofTSI’scommonshareis$245.
Therisk-freerateis0.325%(quotedonanannualcompounding
basis).
TSIrecentlyannounceditsregularsemiannualdividendof$1.50per
sharethatwillbepaidexactlythreemonthsbeforecontract
expiration.
ThemarketpriceoftheTSIequityforwardcontractisequaltotheno
arbitrageforwardprice.
8-181
Case:DonaldTroubadour
BasedonExhibit2andassumingannualcompounding,thearbitrage
profitonthebondfuturescontractisclosestto:
A.0.4158.
B.0.5356.
C.0.6195.
9-181
Case:DonaldTroubadour
Answer:B
Theno-arbitragefuturespriceisequaltothefollowing:
F(T)=FV(T)[B(T+Y)+AI-PVCI]
0
0,T0,T
0
0
F(T)=(1+0.003)0
0
.25(112.00+0.08-0)
F0(T)=(1+0.003)0.25(112.08)=112.1640
Theadjustedpriceofthefuturescontractisequaltotheconversionfactormultiplied
bythequotedfuturesprice:
F(T)=CF(T)QF(T)
F0(T)=(0.90)(125)=112.50
0
0
Addingtheaccruedinterestof0.20inthreemonths(futurescontractexpiration)to
theadjustedpriceofthefuturescontractgivesatotalpriceof112.70.Thisdifference
meansthatthefuturescontractisoverpricedby112.70-112.1640=0.5360.1he
availablearbitrageprofitisthepresentvalueofthisdifference:0.5360/(1.003)0.25=
0.5356.
10-181
Case:DonaldTroubadour
Thecurrentno-arbitragefuturespriceoftheNikkei225futures
contract(Position1)isclosestto:
A.15,951.81.
B.16,047.86.
C.16,112.21.
11-181
Case:DonaldTroubadour
Answer:B
Theno-arbitragefuturespriceis
F(T)=Se
(r-γ)T
c
0
0
F0(T)=16,080e(0.0029960.011)(3/12)=16,047.68
12-181
Case:DonaldTroubadour
ThevalueofPosition2isclosestto:
A.-¥149,925.
B.-¥150,000.
C.-¥150,075.
13-181
Case:DonaldTroubadour
Answer:A
ThevalueofTroubadour'seuro/JGBforwardpositioniscalculatedas
V(T)=PV[F(T)-F(T)]
t,T
Vt(T)=(100.05-100.20)/(1+0.0030)2/12=-0.149925(per¥100par
value)
t
t
0
Therefore,thevalueoftheTroubadour'sforwardpositionis
Vt(T)=[-0.149925/100](¥100,000,000)=-¥149,925
14-181
Case:DonaldTroubadour
ThevalueofPosition3isclosestto:
A.-¥40,020.
B.¥139,913.
C.¥239,963.
15-181
Case:DonaldTroubadour
Answer:C
Thecurrentno-arbitragepriceoftheforwardcontractis
F(¥/$,T)=S(¥/$)FV(1)/FV(1)
¥,t,T$,t,T
t
t
Ft(¥/$,T)=¥112.00(1-0.002)0
.25/(1+0.003)0.25=¥111.8602
Therefore,thevalueofTroubadour'spositioninthe¥/$forward
contract,onaperdollarbasis,is
V(T)=PV[F(¥/$,T)-F(¥/$,T)]=(112.10-111.8602)/(1-0.002).25=
0
t
¥,t,T
0
t
¥
0.239963per$1
Troubadour'spositionisashortpositionof$1,000,000,sotheshort
positionhasapositivevalueof(¥0.239963/$)x$1,000,000¥239,963
becausetheforwardratehasfallensincethecontractinitiation.
16-181
Case:DonaldTroubadour
BasedonExhibit2,Troubadourshouldfindthatanarbitrage
opportunityrelatingtoTSIsharesis
A.notavailable.
B.availablebasedoncarryarbitrage.
C.availablebasedonreversecarryarbitrage.
17-181
Case:DonaldTroubadour
Answer:A
Thecarryarbitragemodelpriceoftheforwardcontractis
FV(S)S(1+r)T=$250(1+0.003)0.75=$250.562289
0
0
ThemarketpriceoftheTSIforwardcontractis$250.562289.Acarryor
reversecarryarbitrageopportunitydoesnotexistbecausethemarket
priceoftheforwardcontractisequaltothecarryarbitragemodelprice.
18-181
Case:DonaldTroubadour
ThemostappropriateresponsetoTroubadour'ssupervisor'squestion
regardingtheTSIforwardcontractis:
A.adecreaseinTSI'sshareprice,allelseequal.
B.anincreaseintherisk-freerate,allelseequal
C.adecreaseinthemarketpriceoftheforwardcontract,allelse
equal.
19-181
Case:DonaldTroubadour
Answer:B
Fromtheperspectiveofthelongposition,theforwardvalueisequalto
thepresentvalueofthedifferenceinforwardprices:
V(T)=PV[F(T)-F(T)]
t,T
t
t
0
whereF(T)=FV(S+θ-γ).
t
t,T
t
t
t
Allelseequal,anincreaseintherisk-freeratebeforecontract
expirationwouldcausetheforwardprice,F(T),toincrease.This
t
increaseintheforwardpricewouldcausethevalueoftheTSIforward
contract,fromtheperspectiveoftheshort,todecrease.Therefore,an
increaseintherisk-freeratewouldleadtoalossontheshortposition
intheTSIforwardcontract.
20-181
Case:DonaldTroubadour
BasedonExhibits2and3,andassumingannualcompounding,theper
sharevalueofTroubadour'sshortpositionintheTSIforwardcontract
threemonthsaftercontractinitiationisclosestto:
A.$1.6549.
B.$5.1561.
C.$6.6549.
21-181
Case:DonaldTroubadour
Answer:C
Theno-arbitragepriceoftheforwardcontract,threemonthsaftercontractinitiation,
is
F(T)=FV0.25,T(S0.25+θ-γ)
.250.250.25
0
F(T)=[$245+0-$1.50/(1+0.00325)
(0.5-0.25)](1+0.00325)
0
.25
(0.75–0.25)=$243.8966
Therefore,fromtheperspectiveofthelong,thevalueoftheTSIforwardcontractis
.75-0.25=
-$6.6549
BecauseTroubadourisshorttheTSIforwardcontract,thevalueofhispositionisa
gainof$6.6549.
V(T)=PV[F(T)-F0(T)]=($243.8966-$250.562289)/(1+0.00325)0
0.25,T0.25
0
.25
22-181
Case:SonalJohnson
SonalJohnsonisariskmanagerforabank.Shemanagesthebank's
risksusingacombinationofswapsandforwardrateagreements(FRAs).
Johnsonpricesathree-yearLibor-basedinterestrateswapwithannual
resetsusingthepresentvaluefactorspresentedinExhibit1.
Exhibit1
PresentValueFactors
Maturity(years)
PresentValueFactors
0.990099
1
2
3
0.977876
0.965136
23-181
Case:SonalJohnson
JohnsonalsousesthepresentvaluefactorsinExhibit1tovaluean
interestrateswapthatthebankenteredintooneyearagoasthe
receive-floatingparty.Selecteddatafortheswaparepresentedin
Exhibit2.Johnsonnotesthatthecurrentequilibriumtwo-yearfixed
swaprateis1.00%.
Exhibit2
SelectedDataonFixedforFloatingInterestRateSwap
Swapnotionalamount
Originalswapterm
$50,000,000
Threeyears,withannualresets
Fixedswaprate(sinceinitiation)3.00%
24-181
Case:SonalJohnson
Oneofthebank'sinvestmentsisexposedtomovementsinthe
Japaneseyen,andJohnsondesirestohedgethecurrencyexposure.
Shepricesaone-yearfixed-for-fixedcurrencyswapinvolvingyenand
USdollars,withaquarterlyreset.Johnsonusestheinterestratedata
presentedinExhibit3topricethecurrencyswap.
Exhibit3
SelectedJapaneseandUSInterestRateData
DaystoMaturity
YenSpotInterestRates
USDollarSpotInterestRates
9
1
2
3
0
0.05%
0.10%
0.15%
0.25%
0.20%
0.40%
0.55%
0.70%
80
70
60
25-181
Case:SonalJohnson
Johnsonnextreviewsanequityswapwithanannualresetthatthe
bankenteredintosixmonthsagoasthereceive-fixed,pay-equityparty.
Selecteddataregardingtheequityswap,whichislinkedtoanequity
index,arepresentedinExhibit4.Atthetimeofinitiation,the
underlyingequityindexwastradingat100.00.
Exhibit4
SelectedDataonEquitySwap
Swapnotionalamount
Originalswapterm
Fixedswaprate
$20,000,000
Fiveyears,withannualresets
2.00%
26-181
Case:SonalJohnson
Theequityindexiscurrentlytradingat103.00,andrelevantUSspot
rates,alongwiththeirassociatedpresentvaluefactors,arepresentedin
Exhibit5.
Exhibit5
SelectedUSSpotRatesandPresentValueFactors
Maturity(years)
SpotRate
0.4%
PresentValueFactors
0.998004
0.5
1.5
2.5
3.5
4.5
1.00%
1.20%
2.00%
2.60%
0.985222
0.970874
0.934579
0.895255
27-181
Case:SonalJohnson
Johnsonreviewsa6x9FRAthatthebankenteredinto90daysagoas
thepay-fixed/receive-floatingparty.SelecteddatafortheFRAare
presentedinExhibit6,andcurrentLibordataarepresentedinExhibit7.
Basedonherinterestrateforecast,Johnsonalsoconsiderswhetherthe
bankshouldenterintonewpositionsin1x4and2x5FRAs.
Exhibit6
FRAterm
FRArate
6x9FRAData
6x9
0.70%
FRAnotionalamount
FRAsettlementterms
US$20,000,000
Advancedset,advancedsettle
28-181
Case:SonalJohnson
Exhibit7
CurrentLibor
3
3
3
3
3
3
3
3
0-dayLibor
0-dayLibor
0-dayLibor
0-dayLibor
0-dayLibor
0-dayLibor
0-dayLibor
0-dayLibor
0.75%
0.82%
0.90%
0.92%
0.94%
0.95%
0.97%
1.00%
29-181
Case:SonalJohnson
Threemonthslater,the6x9FRAinExhibit6reachesexpiration,at
whichtimethethree-monthUSdollarLiboris1.10%andthesix-month
USdollarLiboris1.20%.Johnsondeterminesthattheappropriate
discountratefortheFRAsettlementcashflowsis1.10%.
30-181
Case:SonalJohnson
BasedonExhibit1,Johnsonshouldpricethethree-yearLibor-based
interestrateswapatafixedrateclosestto:
A.0.34%.
B.1.16%.
C.1.19%.
31-181
Case:SonalJohnson
Answer:C
Theswappricingequationis
1
PV(1)
0,t
VFIX
n
n
PV(1)
0
,t
i
i1
Thatis,thefixedswaprateisequalto1minusthefinalpresentvalue
factor(inthiscase,Year3)dividedbythesumofthepresentvalues(in
thiscase,thesumofYears1,2,and3).Thesumofpresentvaluesfor
Years1,2,and3iscalculatedas
n
PV(1)0.990099+0.977876+0.965136=2.933111
0
,t
i
i1
Thus,thefixed-swaprateiscalculatedas
32-181
Case:SonalJohnson
Thus,thefixed-swaprateiscalculatedas
0.965136
1
V
0.01189or1.19%
FIX
2
.933111
33-181
Case:SonalJohnson
Fromthebank'sperspective,usingdatafromExhibit1,thecurrent
valueoftheswapdescribedinExhibit2isclosestto:
A.-$2,951,963.
B.-$1,967,975.
C.-$1,943,000.
34-181
Case:SonalJohnson
Answer:B
Thevalueofaswapfromtheperspectiveofthereceive-fixedpartyis
calculatedas
n'
VNA(FSFS)PV
0
t
t,ti
i1
Theswaphastwoyearsremaininguntilexpiration.Thesumofthe
presentvaluesforYears1and2is
n'
PV0.990099+0.977876=1.967975
t,t
i
i1
35-181
Case:SonalJohnson
Giventhecurrentequilibriumtwo-yearswaprateof1.00%andthe
fixedswaprateatinitiationof3.00%,theswapvalueperdollarnotional
iscalculatedas
V=(0.030.01)1.967975=0.0393595
Thecurrentvalueoftheswap,fromtheperspectiveofthereceive-fixed
party,is$50,000,000X0.0393595=$1,967,975.Fromtheperspective
ofthebank,asthereceive-floatingparty,thevalueoftheswapis-
$
1,967,975.
36-181
Case:SonalJohnson
BasedonExhibit3,Johnsonshoulddeterminethattheannualized
equilibriumfixedswaprateforJapaneseyenisclosestto:
A.0.0624%.
B.0.1375%.
C.0.2496%.
37-181
Case:SonalJohnson
Answer:C
Theequilibriumswapfixedrateforyeniscalculatedas
1
PV0,t4,JPY(1)
rFIX,JPY
4
PV0,t4,JPY(1)
i1
Theyenpresentvaluefactorsarecalculatedas
1
PV(1)
0
,t
i
NADi
NTD
1
r(
)
Spoti
181
Case:SonalJohnson
90-dayPVfactor=1/[1+0.0005(90/360)]=0.999875.
180-dayPVfactor=1/[1+0.0010(180/360)]0.999500.
270-dayPVfactor=11[1+0.0015(270/360)]0.998876.
360-dayPVfactor=11[1+0.0025(360/360)]0.997506.
Sumofpresentvaluefactors=3.995757.
Therefore,theyenperiodicrateiscalculatedas
1
0.997506
rFIX,JPY
0.000624or0.0624%
3
.995757
Theannualizedrateis(360/90)timestheperiodicrateof0.0624%,or
0.2496%.
39-181
Case:SonalJohnson
Fromthebank'sperspective,usingdatafromExhibits4and5,thefair
valueoftheequityswapisclosestto:
A.-$1,139,425.
B.-$781,323.
C.-$181,323.
40-181
Case:SonalJohnson
Answer:B
Thevalueofanequityswapiscalculatedas
St
VFB(C)()NAE
t
t
0
S
t
Theswapwasinitiatedsixmonthsago,sothefirstresethasnotyet
passed;thus,therearefiveremainingcashflowsforthisequityswap.
Thefairvalueoftheswapisdeterminedbycomparingthepresent
valueoftheimpliedfixedratebondwiththereturnontheequityindex.
Thefixedswaprateof2.00%,theswapnotionalamountof$20,000,000,
andthepresentvaluefactorsinExhibit5resultinapresentvalueofthe
impliedfixed-ratebond'scashflowsof$19,818,677:
41-181
Case:SonalJohnson
Date(in
years)
PVFactors
FixedCashFlowPV(fixedcashflow)
0
.5
.5
.5
.5
.5
0.998004or
$400,000
$400,000
$400,000
$400,000
$20,400,000
$399,202
1/[1+0.004(180/360)]
1
2
3
4
0.985222or
1/[1+0.01(540/360)]
$394,089
0.970874or
1/[1+0.012(900/360)]
$388,350
0.934579or
1/[1+0.02(1260/360)]
$373,832
0.895255or
1/[1+0.026(1620/360)]
$18,263,205
Total
$19,818,677
42-181
Case:SonalJohnson
Thevalueoftheequitylegoftheswapiscalculatedas
(103/100)($20,000,000)=$20,600,000.
Therefore,thefairvalueoftheequityswap,fromtheperspectiveofthe
bank(receive-fixed,pay-equityparty)iscalculatedas
Vt=$19,818,677-$20,600,000=-781,323
43-181
Case:SonalJohnson
BasedonExhibit5,thecurrentvalueoftheequityswapdescribedin
Exhibit4wouldbezeroiftheequityindexwascurrentlytradingthe
closestto:
A.97.30.
B.99.09.
C.100.00.
44-181
Case:SonalJohnson
Answer:B
Theequityindexlevelatwhichtheswap'sfairvaluewouldbezerocan
becalculatedbysettingtheswapvaluationformulaequaltozeroand
solvingforSt:
St
0
FB(C)()NAE
t
0
St
Thevalueofthefixedlegoftheswaphasapresentvalueof
$
19,818,677,or99.0934%ofparvalue:
45-181
Case:SonalJohnson
Date(inyears)
PVFactors
FixedCashFlow
$400,000
PV(fixedcashflow)
0.5
1.5
2.5
3.5
0.998004
0.985222
0.970874
0.934579
$399,202
$394,089
$388,350
$373,832
$400,000
$400,000
$400,000
4
.5
0.895255
$20,400,000
$18,263,205
$19,818,677
Total
46-181
Case:SonalJohnson
Treatingtheswapnotionalvalueasparvalueandsubstitutingthe
presentvalueofthefixedlegandS0intotheequationyields
99.0934-
S
100
0
t
100
SolvingforStyields
St=99.0934
47-181
Case:SonalJohnson
Fromthebank'sperspective,basedonExhibits6and7,thevalueofthe
6x9FRA90daysafterinceptionisclosestto:
A.$14,817.
B.$19,647.
C.$29,635.
48-181
Case:SonalJohnson
Answer:A
Thecurrentvalueofthe6x9FRAiscalculatedas
V(0,h,m){[FRA(g,hg,m)FRA(0,h,m)]t}/[1D(hmg)t
]
g
m
g
hmg
The6x9FRAexpiressixmonthsafterinitiation.Thebankenteredinto
theFRA90daysago;thus,theFRAwillexpirein90days.Tovaluethe
FRA,thefirststepistocomputethenewFRArate,whichistherateon
Day90ofanFRAthatexpiresin90daysinwhichtheunderlyingisthe
9
0-dayLibor,orFRA(90,90,90):
V(0,h,m){[FRA(g,hg,m)FRA(0,h,m)]t}/[1D(hmg)t
hmg
]
g
m
g
FRA(g,hg,m){[1Lg(hgm)thgm]/[1L(hg)t]1}/t
0
hg
m
FRA(90,90,90){[1L(1809090)(180/360)]/[1L(18090)(90/360)]1}/(90/360)
9
0
90
FRA(90,90,90){[1L(180)(180/360)]/[1L(90)(90/360)]1}/(90/360)
9
0
90
49-181
Case:SonalJohnson
Exhibit7indicatesthatL90(180)=0.95%andL90(90)=0.90%,so
FRA(90,90,90){[10.0095(180/360)]/[10.009(90/360)]1}/(90/360)
[(1.00475/1.00225)1](4)0.009978,or0.9978%
Therefore,giventheFRArateatinitiationof0.70%andnotional
principalof$20millionfromExhibit1,thecurrentvalueoftheforward
contractiscalculatedas
V(0,h,m)V(0,180,90)
g
90
V(0,180,90)$20,000,000[(0.0099780.007)(90/360)]/[10.0095(180/360)]
90
$14,887.75/1.00475$14,817.37
50-181
Case:SonalJohnson
BasedonExhibit7,theno-arbitragefixedrateonanew1x4FRAis
closestto:
A.0.65%.
B.0.73%.
C.0.98%.
51-181
Case:SonalJohnson
Answer:C
Theno-arbitragefixedrateonthe1x4FRAiscalculatedas
FRA(0,h,m){[1L(hm)t]/[1L(h)t]1}/t
0
hm
0
h
m
Fora1x4FRA,thetworatesneededtocomputetheno-arbitrageFRA
fixedrateareL(30)=0.75%andL(120)=0.92%.Therefore,theno-
arbitragefixedrateonthe1x4FRArateiscalculatedas
FRA(0,30,90){[10.0092(120/360)]/[10.0075(30/360)]1}/(90/360)
[(1.003066/1.000625)1]40.009761,or0.98%rounded
52-181
Case:SonalJohnson
BasedonExhibit7,thefixedrateonanew2x5FRAisclosestto:
A.0.61%.
B.1.02%.
C.1.71%.
53-181
Case:SonalJohnson
Answer:B
Thefixedrateonthe2x5FRAiscalculatedas
FRA(0,h,m){[1L(hm)t]/[1L(h)t]1}/t
0
hm
0
h
m
Fora2x5FRA,thetworatesneededtocomputetheno-arbitrageFRA
fixedrateareL(60)=0.82%andL(l50)=0.94%.Therefore,theno-
arbitragefixedrateonthe2x5FRArateiscalculatedas
FRA(0,60,90){[10.0094(150/360)]/[10.0082(60/360)]1}/(90/360)
[(1.003917/1.001367)1]40.010186,or1.02%rounded
54-181
Case:SonalJohnson
BasedonExhibit6andthethree-monthUSdollarLiboratexpiration,
thepaymentamountthatthebankwillreceivetosettlethe6x9FRAis
closestto:
A.$19,945.
B.$24,925.
C.$39,781.
55-181
Case:SonalJohnson
Answer:A
Givenathree-monthUSdollarLiborof1.10%atexpiration,the
settlementamountforthebankasthereceive-floatingpartyis
calculatedas
Settlementamount(receivefloating)=NA{[L(m)-FRA(0,h,m)]t}/[1+D(m)t]
h
m
h
m
=
=
$20,000,000[(0.011-0.007)(90/360)]/[1+0.011(90/360)]
$20,000/1.00275=$19,945.15
Therefore,thebankwillreceive$19,945(rounded)asthereceive-
floatingparty.
56-181
Reading38
ValuationofContingentClaims
57-181
Case:BrunoSousa
BrunoSousahasbeenhiredrecentlytoworkwithsenioranalystCamila
Rocha.Rochagiveshimthreeoptionvaluationtasks.
AlphaCompany
Sousa'sfirsttaskistoillustratehowtovalueacalloptiononAlpha
Companywithaone-periodbinomialoptionpricingmodel.Itisanon-
dividend-payingstock,andtheinputsareasfollows.
Thecurrentstockpriceis50,andthecalloptionexercisepriceis50.
Inoneperiod,thestockpricewilleitherriseto56ordeclineto46.
Therisk-freerateofreturnis5%perperiod.
Basedonthemodel,RochaasksSousatoestimatethehedgeratio,the
risk-neutralprobabilityofanupmove,andthepriceofthecalloption.In
theillustration,Sousaisalsoaskedtodescriberelatedarbitragepositions
touseifthecalloptionisoverpricedrelativetothemodel.
58-181
Case:BrunoSousa
BetaCompany
Next,Sousausesthetwo-periodbinomialmodeltoestimatethevalueofa
EuropeanstylecalloptiononBetaCompany'scommonshares.Theinputs
areasfollows.
Thecurrentstockpriceis38,andthecalloptionexercisepriceis40.
Theupfactor(u)is1.300,andthedownfactor(d)is0.800.
Therisk-freerateofreturnis3%perperiod.
Sousathenanalyzesaputoptiononthesamestock.Alloftheinputs,
includingtheexerciseprice,arethesameasforthecalloption.He
estimatesthatthevalueofaEuropean-styleputoptionis4.53.Exhibit1
summarizeshisanalysis.SousanextmustdeterminewhetheranAmerican-
styleputoptionwouldhavethesamevalue.
59-181
Case:BrunoSousa
Exhibit1Two-PeriodBinomialEuropean-StylePutOptiononBeta
Company
Item
Underlying
Put
Value
64.22
0
Item
Underlying
Put
Value
49.4
0.2517
Item
Underlying
Put
Value
38
Hedge
Ratio
0.01943
Item
Underlying
Put
Value
39.52
0.48
4.5346
Item
Underlying
Put
Value
30.4
Hedge
Ratio
-
0.4307
Item
Underlying
Put
Value
24.32
15.68
8.4350
Hedge
Ratio
-
1
Time=0
Time=1
Time=2
60-181
Case:BrunoSousa
Sousamakestwostatementswithregardtothevaluationofa
European-styleoptionundertheexpectationsapproach.
Statement1Thecalculationinvolvesdiscountingattherisk-free
rate.
Statement2Thecalculationusesrisk-neutralprobabilitiesinstead
oftrueprobabilities.
RochaasksSousawhetheritiseverprofitabletoexerciseAmerican
optionspriortomaturity.Sousaanswers,“Icanthinkoftwopossible
cases.ThefirstcaseistheearlyexerciseofanAmericancalloptionona
dividend-payingstock.Thesecondcaseistheearlyexerciseofan
Americanputoption.”
61-181
Case:BrunoSousa
InterestRateOption
Thefinaloptionvaluationtaskinvolvesaninterestrateoption.Sousa
mustvalueatwo-year,European-stylecalloptiononaone-yearspot
rate.Thenotionalvalueoftheoptionis1million,andtheexerciserate
is2.75%.Therisk-neutralprobabilityofanupmoveis0.50.Thecurrent
andexpectedone-yearinterestratesareshowninExhibit2,alongwith
thevaluesofaone-yearzero-couponbondof1notionalvalueforeach
interestrate.
62-181
Case:BrunoSousa
Exhibit2Two-YearInterestRateLatticeforanInterestRateOption
Maturity
Value
Rate
1
0.952381
5%
Maturity
Value
Rate
1
0.961538
4%
Maturity
Value
Rate
Maturity
Value
Rate
1
0.970874
3%
1
0.970874
3%
Maturity
Value
Rate
1
0.980392
2%
Maturity
Value
Rate
1
0.990099
1%
Time=0
Time=1
Time=2
63-181
Case:BrunoSousa
RochaasksSousawhythevalueofasimilarin-the-moneyinterestrate
calloptiondecreasesiftheexercisepriceishigher.Sousaprovidestwo
reasons.
Reason1Theexercisevalueofthecalloptionislower.
Reason2Therisk-neutralprobabilitiesarechanged.
64-181
Case:BrunoSousa
TheoptimalhedgeratiofortheAlphaCompanycalloptionusingthe
oneperiodbinomialmodelisclosestto:
A.0.60.
B.0.67.
C.1.67.
65-181
Case:BrunoSousa
Answer:A
Thehedgeratiorequirestheunderlyingstockandcalloptionvaluesfor
theupmoveanddownmove.S+=56,andS-=46.c+=Max(0,S+-X)=
Max(0,56-50)=6,andc-=Max(0,S--X)=Max(0,46-50)=0.Thehedge
ratiois
CC
60
60.60
h
SS
564610
66-181
Case:BrunoSousa
Therisk-neutralprobabilityoftheupmovefortheAlphaCompany
stockisclosestto:
A.0.06.
B.0.40.
C.0.65.
67-181
Case:BrunoSousa
Answer:C
Forthisapproach,therisk-freerateisr=0.05,theupfactorisu=S+IS
=
56/50=1.12,andthedownfactorisd=S-IS=46/50=0.92.The
risk-neutralprobabilityofanupmoveis
[FV(1)d]/(ud)(1rd)/(ud)
(10.050.92)/(1.120.92)=0.13/0.20=0.65
68-181
Case:BrunoSousa
ThevalueoftheAlphaCompanycalloptionisclosestto:
A.3.71.
B.5.71.
C.6.19.
69-181
Case:BrunoSousa
Answer:A
Thecalloptioncanbeestimatedusingtheno-arbitrageapproachor
theexpectationsapproach.Withtheno-arbitrageapproach,thevalue
ofthecalloptionis
chSPV(hSc)
h(cc)/(SS)(60)/(5646)0.60
c(0.6050)(1/1.05)[(-0.6046)0]
c30[(1/1.05)27.6]3026.2863.714
70-181
Case:BrunoSousa
Usingtheexpectationsapproach,therisk-freerateisr=0.05,theup
factorisu=S+/S=56/50=1.12,andthedownfactorisd=S-/S=
4
6/50=0.92.Thevalueofthecalloptionis
cPV[c(1c)]
[FV(1)d]/(ud)(1.050.92)/(1.120.92)0.65
c(1/1.05)[0.65(6)+0.65(0)](1/1.05)(3.9)3.714
Bothapproachesarelogicallyconsistentandyieldidenticalvalues.
71-181
Case:BrunoSousa
FortheAlphaCompanyoption,thepositionstotakeadvantageofthe
arbitrageopportunityaretowritethecalland:
A.shortsharesofAlphastockandlend.
B.buysharesofAlphastockandborrow.
C.shortsharesofAlphastockandborrow.
72-181
Case:BrunoSousa
Answer:B
Youshouldsell(write)theoverpricedcalloptionandthengolong(buy)the
replicatingportfolioforacalloption.Thereplicatingportfolioforacalloptionisto
buyhsharesofthestockandborrowthepresentvalueof(hS--c-).
chSPV(hSc)
h(cc)/(SS)(60)/(5646)0.60
Fortheexampleinthiscase,thevalueofthecalloptionis3.714.Iftheoptionis
overpricedat,say,4.50,youshorttheoptionandhaveacashflowatTime0of+4.50.
Youbuythereplicatingportfolioof0.60sharesat50pershare(givingyouacash
flowof-30)andborrow(1/1.05)x[(0.60x46)-0]=(111.05)x27.6=26.287.Your
cashflowforbuyingthereplicatingportfoliois-30+26.287=-3.713.Yournetcash
flowatTime0is+4.503.713=0.787.YournetcashflowatTime1fo
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年濱州學(xué)院輔導(dǎo)員考試筆試真題匯編附答案
- 2024年福州外語(yǔ)外貿(mào)學(xué)院輔導(dǎo)員考試筆試真題匯編附答案
- 2024年鄭州職業(yè)技術(shù)學(xué)院輔導(dǎo)員招聘考試真題匯編附答案
- 2024年陜西國(guó)防工業(yè)職業(yè)技術(shù)學(xué)院輔導(dǎo)員考試參考題庫(kù)附答案
- 2025中共雅安市委社會(huì)工作部社會(huì)化選聘新興領(lǐng)域黨建工作專員38人(四川)參考題庫(kù)附答案
- 2025云南昭通魯?shù)榭h公安局招聘輔警32人備考題庫(kù)含答案
- 2025山東菏澤市定陶區(qū)奇諾雙語(yǔ)實(shí)驗(yàn)學(xué)校教師招聘參考題庫(kù)含答案
- 2025年臨夏現(xiàn)代職業(yè)學(xué)院輔導(dǎo)員招聘考試真題匯編附答案
- 2025年商洛職業(yè)技術(shù)學(xué)院輔導(dǎo)員考試參考題庫(kù)附答案
- 2025年陜西師范大學(xué)吳堡實(shí)驗(yàn)學(xué)校教師招聘參考題庫(kù)及答案1套
- 北京通州產(chǎn)業(yè)服務(wù)有限公司招聘?jìng)淇碱}庫(kù)必考題
- 2026南水北調(diào)東線山東干線有限責(zé)任公司人才招聘8人筆試模擬試題及答案解析
- 伊利實(shí)業(yè)集團(tuán)招聘筆試題庫(kù)2026
- 2026年基金從業(yè)資格證考試題庫(kù)500道含答案(完整版)
- DB32/T+4396-2022《勘察設(shè)計(jì)企業(yè)質(zhì)量管理標(biāo)準(zhǔn)》-(高清正版)
- 老年照護(hù)初級(jí)理論知識(shí)測(cè)試題庫(kù)與答案
- 二級(jí)建造師繼續(xù)教育題庫(kù)帶答案(完整版)
- 地下儲(chǔ)氣庫(kù)建設(shè)的發(fā)展趨勢(shì)
- 臺(tái)州市街頭鎮(zhèn)張家桐村調(diào)研報(bào)告
- 壓力排水管道安裝技術(shù)交底
- 糖代謝紊亂生物化學(xué)檢驗(yàn)
評(píng)論
0/150
提交評(píng)論