版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年湖北省浠水縣聯(lián)考中考數(shù)學(xué)押題試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.方程(m–2)x2+3mx+1=0是關(guān)于x的一元二次方程,則()A.m≠±2 B.m=2 C.m=–2 D.m≠22.如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口,4小時后貨船在小島的正東方向,則貨船的航行速度是()A.7海里/時 B.7海里/時 C.7海里/時 D.28海里/時3.﹣的絕對值是()A.﹣ B. C.﹣2 D.24.某品牌的飲水機(jī)接通電源就進(jìn)入自動程序:開機(jī)加熱到水溫100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機(jī)后用時(min)成反比例關(guān)系,直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動開機(jī),重復(fù)上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間x(min)的關(guān)系如圖所示,水溫從100℃降到35℃所用的時間是()A.27分鐘 B.20分鐘 C.13分鐘 D.7分鐘5.已知一組數(shù)據(jù)a,b,c的平均數(shù)為5,方差為4,那么數(shù)據(jù)a﹣2,b﹣2,c﹣2的平均數(shù)和方差分別是.()A.3,2 B.3,4 C.5,2 D.5,46.在一個不透明的袋子中裝有除顏色外其余均相同的m個小球,其中5個黑球,從袋中隨機(jī)摸出一球,記下其顏色,這稱為依次摸球試驗,之后把它放回袋中,攪勻后,再繼續(xù)摸出一球.以下是利用計算機(jī)模擬的摸球試驗次數(shù)與摸出黑球次數(shù)的列表:摸球試驗次數(shù)100100050001000050000100000摸出黑球次數(shù)46487250650082499650007根據(jù)列表,可以估計出m的值是()A.5 B.10 C.15 D.207.某校體育節(jié)有13名同學(xué)參加女子百米賽跑,它們預(yù)賽的成績各不相同,取前6名參加決賽.小穎已經(jīng)知道了自己的成績,她想知道自己能否進(jìn)入決賽,還需要知道這13名同學(xué)成績的()A.方差B.極差C.中位數(shù)D.平均數(shù)8.如圖,在4×4的正方形網(wǎng)格中,每個小正方形的邊長都為1,△AOB的三個頂點都在格點上,現(xiàn)將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到對應(yīng)的△COD,則點A經(jīng)過的路徑弧AC的長為()A. B.π C.2π D.3π9.下列選項中,能使關(guān)于x的一元二次方程ax2﹣4x+c=0一定有實數(shù)根的是()A.a(chǎn)>0 B.a(chǎn)=0 C.c>0 D.c=010.定義運算“※”為:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.則函數(shù)y=2※x的圖象大致是()A. B.C. D.11.如圖,由四個正方體組成的幾何體的左視圖是()A. B. C. D.12.不等式組的正整數(shù)解的個數(shù)是()A.5 B.4 C.3 D.2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,直線經(jīng)過、兩點,則不等式的解集為_______.14.已知⊙O的半徑為5,由直徑AB的端點B作⊙O的切線,從圓周上一點P引該切線的垂線PM,M為垂足,連接PA,設(shè)PA=x,則AP+2PM的函數(shù)表達(dá)式為______,此函數(shù)的最大值是____,最小值是______.15.如圖,Rt△ABC中,若∠C=90°,BC=4,tanA=,則AB=___.16.如果反比例函數(shù)的圖象經(jīng)過點A(2,y1)與B(3,y2),那么的值等于_____________.17.如圖,中,,,,,平分,與相交于點,則的長等于_____.18.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出2個球,都是黃球的概率為.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知一次函數(shù)y=x﹣3與反比例函數(shù)的圖象相交于點A(4,n),與軸相交于點B.填空:n的值為,k的值為;以AB為邊作菱形ABCD,使點C在軸正半軸上,點D在第一象限,求點D的坐標(biāo);考察反比函數(shù)的圖象,當(dāng)時,請直接寫出自變量的取值范圍.20.(6分)如圖,AB是⊙O的直徑,點C是AB的中點,連接AC并延長至點D,使CD=AC,點E是OB上一點,且OEEB求證:BD是⊙O的切線;(2)當(dāng)OB=2時,求BH的長.21.(6分)如圖,△ABC中AB=AC,請你利用尺規(guī)在BC邊上求一點P,使△ABC~△PAC不寫畫法,(保留作圖痕跡).22.(8分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.23.(8分)如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標(biāo)為(4,0).(1)求該拋物線的解析式;(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標(biāo);(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標(biāo);(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.24.(10分)如圖,AB為⊙O直徑,C為⊙O上一點,點D是的中點,DE⊥AC于E,DF⊥AB于F.(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;(2)若OF=4,求AC的長度.25.(10分)如圖,在平面直角坐標(biāo)系xOy中,已知點A(3,0),點B(0,3),點O為原點.動點C、D分別在直線AB、OB上,將△BCD沿著CD折疊,得△B'CD.(Ⅰ)如圖1,若CD⊥AB,點B'恰好落在點A處,求此時點D的坐標(biāo);(Ⅱ)如圖2,若BD=AC,點B'恰好落在y軸上,求此時點C的坐標(biāo);(Ⅲ)若點C的橫坐標(biāo)為2,點B'落在x軸上,求點B'的坐標(biāo)(直接寫出結(jié)果即可).26.(12分)撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補(bǔ)全條形圖;(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?(4)若從體能為A等級的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.27.(12分)計算:﹣4cos45°+()﹣1+|﹣2|.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:根據(jù)一元二次方程的概念,可知m-2≠0,解得m≠2.故選D2、A【解析】試題解析:設(shè)貨船的航行速度為海里/時,小時后貨船在點處,作于點.由題意海里,海里,在中,所以在中,所以所以解得:故選A.3、B【解析】
根據(jù)求絕對值的法則,直接計算即可解答.【詳解】,故選:B.【點睛】本題主要考查求絕對值的法則,掌握負(fù)數(shù)的絕對值等于它的相反數(shù),是解題的關(guān)鍵.4、C【解析】
先利用待定系數(shù)法求函數(shù)解析式,然后將y=35代入,從而求解.【詳解】解:設(shè)反比例函數(shù)關(guān)系式為:,將(7,100)代入,得k=700,∴,將y=35代入,解得;∴水溫從100℃降到35℃所用的時間是:20-7=13,故選C.【點睛】本題考查反比例函數(shù)的應(yīng)用,利用數(shù)形結(jié)合思想解題是關(guān)鍵.5、B【解析】試題分析:平均數(shù)為(a?2+b?2+c?2)=(3×5-6)=3;原來的方差:;新的方差:,故選B.考點:平均數(shù);方差.6、B【解析】
由概率公式可知摸出黑球的概率為5m,分析表格數(shù)據(jù)可知摸出黑球次數(shù)【詳解】解:分析表格數(shù)據(jù)可知摸出黑球次數(shù)摸球?qū)嶒灤螖?shù)的值總是在0.5左右,則由題意可得5故選擇B.【點睛】本題考查了概率公式的應(yīng)用.7、C【解析】13個不同的分?jǐn)?shù)按從小到大排序后,中位數(shù)及中位數(shù)之后的共有7個數(shù),故只要知道自己的分?jǐn)?shù)和中位數(shù)就可以知道是否獲獎了.故選C.8、A【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)和弧長公式解答即可.【詳解】解:∵將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到對應(yīng)的△COD,∴∠AOC=90°,∵OC=3,∴點A經(jīng)過的路徑弧AC的長==,故選:A.【點睛】此題考查弧長計算,關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)和弧長公式解答.9、D【解析】試題分析:根據(jù)題意得a≠1且△=,解得且a≠1.觀察四個答案,只有c=1一定滿足條件,故選D.考點:根的判別式;一元二次方程的定義.10、C【解析】
根據(jù)定義運算“※”為:a※b=,可得y=2※x的函數(shù)解析式,根據(jù)函數(shù)解析式,可得函數(shù)圖象.【詳解】解:y=2※x=,當(dāng)x>0時,圖象是y=對稱軸右側(cè)的部分;當(dāng)x<0時,圖象是y=對稱軸左側(cè)的部分,所以C選項是正確的.【點睛】本題考查了二次函數(shù)的圖象,利用定義運算“※”為:a※b=得出分段函數(shù)是解題關(guān)鍵.11、B【解析】從左邊看可以看到兩個小正方形摞在一起,故選B.12、C【解析】
先解不等式組得到-1<x≤3,再找出此范圍內(nèi)的正整數(shù).【詳解】解不等式1-2x<3,得:x>-1,
解不等式≤2,得:x≤3,
則不等式組的解集為-1<x≤3,
所以不等式組的正整數(shù)解有1、2、3這3個,
故選C.【點睛】本題考查了一元一次不等式組的整數(shù)解,解題的關(guān)鍵是正確得出一元一次不等式組的解集.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-1<X<2【解析】經(jīng)過點A,∴不等式x>kx+b>-2的解集為.14、x2+x+20(0<x<10)不存在.【解析】
先連接BP,AB是直徑,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,于是PM:PB=PB:AB,可求從而有(0<x<10),再根據(jù)二次函數(shù)的性質(zhì),可求函數(shù)的最大值.【詳解】如圖所示,連接PB,∵∠PBM=∠BAP,∠BMP=∠APB=90°,∴△PMB∽△PAB,∴PM:PB=PB:AB,∴∴(0<x<10),∵∴AP+2PM有最大值,沒有最小值,∴y最大值=故答案為(0<x<10),,不存在.【點睛】考查相似三角形的判定與性質(zhì),二次函數(shù)的最值等,綜合性比較強(qiáng),需要熟練掌握.15、1.【解析】
在Rt△ABC中,已知tanA,BC的值,根據(jù)tanA=,可將AC的值求出,再由勾股定理可將斜邊AB的長求出.【詳解】解:Rt△ABC中,∵BC=4,tanA=∴則故答案為1.【點睛】考查解直角三角形以及勾股定理,熟練掌握銳角三角函數(shù)是解題的關(guān)鍵.16、【解析】分析:由已知條件易得2y1=k,3y2=k,由此可得2y1=3y2,變形即可求得的值.詳解:∵反比例函數(shù)的圖象經(jīng)過點A(2,y1)與B(3,y2),∴2y1=k,3y2=k,∴2y1=3y2,∴.故答案為:.點睛:明白:若點A和點B在同一個反比例函數(shù)的圖象上,則是解決本題的關(guān)鍵.17、3【解析】
如圖,延長CE、DE,分別交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等邊三角形,根據(jù)等腰直角三角形的性質(zhì)可知CG⊥AB,可求出AG的長,進(jìn)而可得GH的長,根據(jù)含30°角的直角三角形的性質(zhì)可求出EH的長,根據(jù)DE=DH-EH即可得答案.【詳解】如圖,延長CE、DE,分別交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等邊三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴AB==8,AG=AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案為:3【點睛】本題考查等邊三角形的判定及性質(zhì)、等腰直角三角形的性質(zhì)及含30°角的直角三角形的性質(zhì),熟記30°角所對的直角邊等于斜邊的一半的性質(zhì)并正確作出輔助線是解題關(guān)鍵.18、【解析】
讓黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出2個球是黃球的概率是.
故答案為:.【點睛】本題考查了概率的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)3,1;(2)(4+,3);(3)或【解析】
(1)把點A(4,n)代入一次函數(shù)y=x-3,得到n的值為3;再把點A(4,3)代入反比例函數(shù),得到k的值為1;(2)根據(jù)坐標(biāo)軸上點的坐標(biāo)特征可得點B的坐標(biāo)為(2,3),過點A作AE⊥x軸,垂足為E,過點D作DF⊥x軸,垂足為F,根據(jù)勾股定理得到AB=,根據(jù)AAS可得△ABE≌△DCF,根據(jù)菱形的性質(zhì)和全等三角形的性質(zhì)可得點D的坐標(biāo);(3)根據(jù)反比函數(shù)的性質(zhì)即可得到當(dāng)y≥-2時,自變量x的取值范圍.【詳解】解:(1)把點A(4,n)代入一次函數(shù)y=x-3,可得n=×4-3=3;把點A(4,3)代入反比例函數(shù),可得3=,解得k=1.(2)∵一次函數(shù)y=x-3與x軸相交于點B,∴x-3=3,解得x=2,∴點B的坐標(biāo)為(2,3),如圖,過點A作AE⊥x軸,垂足為E,過點D作DF⊥x軸,垂足為F,∵A(4,3),B(2,3),∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2,在Rt△ABE中,AB=,∵四邊形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x軸,DF⊥x軸,∴∠AEB=∠DFC=93°,在△ABE與△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴點D的坐標(biāo)為(4+,3).(3)當(dāng)y=-2時,-2=,解得x=-2.故當(dāng)y≥-2時,自變量x的取值范圍是x≤-2或x>3.20、(1)證明見解析;(2)BH=125【解析】
(1)先判斷出∠AOC=90°,再判斷出OC∥BD,即可得出結(jié)論;(2)先利用相似三角形求出BF,進(jìn)而利用勾股定理求出AF,最后利用面積即可得出結(jié)論.【詳解】(1)連接OC,∵AB是⊙O的直徑,點C是AB的中點,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位線,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵點B在⊙O上,∴BD是⊙O的切線;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴OCBF∵OB=2,∴OC=OB=2,AB=4,OEEB∴2BF∴BF=3,在Rt△ABF中,∠ABF=90°,根據(jù)勾股定理得,AF=5,∵S△ABF=12AB?BF=1∴AB?BF=AF?BH,∴4×3=5BH,∴BH=125【點睛】此題主要考查了切線的判定和性質(zhì),三角形中位線的判定和性質(zhì),相似三角形的判定和性質(zhì),求出BF=3是解本題的關(guān)鍵.21、見解析【解析】
根據(jù)題意作∠CBA=∠CAP即可使得△ABC~△PAC.【詳解】如圖,作∠CBA=∠CAP,P點為所求.【點睛】此題主要考查相似三角形的尺規(guī)作圖,解題的關(guān)鍵是作一個角與已知角相等.22、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)矩形的性質(zhì)得到AB=CD,∠B=∠D=90°,根據(jù)折疊的性質(zhì)得到∠E=∠B,AB=AE,根據(jù)全等三角形的判定定理即可得到結(jié)論;(2)根據(jù)全等三角形的性質(zhì)得到AF=CF,EF=DF,根據(jù)勾股定理得到DF=3,根據(jù)三角形的面積公式即可得到結(jié)論.試題解析:(1)∵四邊形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵將矩形ABCD沿對角線AC翻折,點B落在點E處,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF與△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴圖中陰影部分的面積=S△ACE﹣S△AEF=×4×8﹣×4×3=1.點睛:本題考查了翻折變換﹣折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.23、(1)y=﹣;(1)點K的坐標(biāo)為(,0);(2)點P的坐標(biāo)為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).【解析】試題分析:(1)把A、C兩點坐標(biāo)代入拋物線解析式可求得a、c的值,可求得拋物線解析;(1)可求得點C關(guān)于x軸的對稱點C′的坐標(biāo),連接C′N交x軸于點K,再求得直線C′K的解析式,可求得K點坐標(biāo);(2)過點E作EG⊥x軸于點G,設(shè)Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關(guān)于m的解析式,再根據(jù)二次函數(shù)的性質(zhì)可求得Q點的坐標(biāo);(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據(jù)等腰三角形的性質(zhì)求得F點的坐標(biāo),進(jìn)一步求得P點坐標(biāo)即可.試題解析:(1)∵拋物線經(jīng)過點C(0,4),A(4,0),∴,解得,∴拋物線解析式為y=﹣x1+x+4;(1)由(1)可求得拋物線頂點為N(1,),如圖1,作點C關(guān)于x軸的對稱點C′(0,﹣4),連接C′N交x軸于點K,則K點即為所求,設(shè)直線C′N的解析式為y=kx+b,把C′、N點坐標(biāo)代入可得,解得,∴直線C′N的解析式為y=x-4,令y=0,解得x=,∴點K的坐標(biāo)為(,0);(2)設(shè)點Q(m,0),過點E作EG⊥x軸于點G,如圖1,由﹣x1+x+4=0,得x1=﹣1,x1=4,∴點B的坐標(biāo)為(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴,即,解得EG=;∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)==-(m-1)1+2.又∵﹣1≤m≤4,∴當(dāng)m=1時,S△CQE有最大值2,此時Q(1,0);(4)存在.在△ODF中,(?。┤鬌O=DF,∵A(4,0),D(1,0),∴AD=OD=DF=1.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此時,點F的坐標(biāo)為(1,1).由﹣x1+x+4=1,得x1=1+,x1=1﹣.此時,點P的坐標(biāo)為:P1(1+,1)或P1(1﹣,1);(ⅱ)若FO=FD,過點F作FM⊥x軸于點M.由等腰三角形的性質(zhì)得:OM=OD=1,∴AM=2.∴在等腰直角△AMF中,MF=AM=2.∴F(1,2).由﹣x1+x+4=2,得x1=1+,x1=1﹣.此時,點P的坐標(biāo)為:P2(1+,2)或P4(1﹣,2);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°.∴AC=4.∴點O到AC的距離為1.而OF=OD=1<1,與OF≥1矛盾.∴在AC上不存在點使得OF=OD=1.此時,不存在這樣的直線l,使得△ODF是等腰三角形.綜上所述,存在這樣的直線l,使得△ODF是等腰三角形.所求點P的坐標(biāo)為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).點睛:本題是二次函數(shù)綜合題,主要考查待定系數(shù)法、三角形全等的判定與性質(zhì)、等腰三角形的性質(zhì)等,能正確地利用數(shù)形結(jié)合思想、分類討論思想等進(jìn)行解題是關(guān)鍵.24、(1)DE與⊙O相切,證明見解析;(2)AC=8.【解析】(1)解:(1)DE與⊙O相切.證明:連接OD、AD,∵點D是的中點,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE與⊙O相切.(2)連接BC,根據(jù)△ODF與△ABC相似,求得AC的長.AC=825、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).【解析】
(1)設(shè)OD為x,則BD=AD=3,在RT△ODA中應(yīng)用勾股定理即可求解;(1)由題意易證△BDC∽△BOA,再利用A、B坐標(biāo)及BD=AC可求解出BD長度,再由特殊角的三角函數(shù)即可求解;(3)過點C作CE⊥AO于E,由A、B坐標(biāo)及C的橫坐標(biāo)為1,利用相似可求解出BC、CE、OC等長度;分點B’在A點右邊和左邊兩種情況進(jìn)行討論,由翻折的對稱性可知BC=B’C,再利用特殊角的三角函數(shù)可逐一求解.【詳解】(Ⅰ)設(shè)OD為x,∵點A(3,0),點B(0,),∴AO=3,BO=∴AB=6∵折疊∴BD=DA在Rt△ADO中,OA1+OD1=DA1.∴9+OD1=(﹣OD)1.∴OD=∴D(0,)(Ⅱ)∵折疊∴∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 雨水回用系統(tǒng)設(shè)計技術(shù)方案
- 兒童病房后勤保障體系建設(shè)方案
- 儲備糧倉庫人力資源配置方案
- 工地物料庫存預(yù)警機(jī)制方案
- 給排水系統(tǒng)驗收技術(shù)方案
- 建筑物外墻保溫方案
- 消防設(shè)施應(yīng)急處置演練方案
- 建筑屋頂保溫施工技術(shù)標(biāo)準(zhǔn)方案
- 消防電源系統(tǒng)選擇與設(shè)計方案
- 2026年河南省事業(yè)單位公開招聘聯(lián)考備考題庫附參考答案詳解(研優(yōu)卷)
- 高一上學(xué)期期末考試英語試卷及答案兩套(附聽力錄音稿)
- 勞務(wù)派遣標(biāo)書服務(wù)方案(全覆蓋版本)
- 視覺傳播概論 課件全 任悅 第1-12章 視覺傳播的研究- 視覺傳播中的倫理與法規(guī)
- 溝通技巧與情商提升
- 2024屆新疆維吾爾自治區(qū)烏魯木齊市高三上學(xué)期第一次質(zhì)量監(jiān)測生物試題【含答案解析】
- 公司基層黨建問題清單
- 《廣西歷史建筑保護(hù)修繕及檢測技術(shù)標(biāo)準(zhǔn)》
- 福州港羅源灣港區(qū)碧里作業(yè)區(qū)4號泊位擴(kuò)能改造工程環(huán)境影響報告
- 八年級物理下冊《滑輪》練習(xí)題及答案-人教版
- 江蘇省建設(shè)工程施工項目部關(guān)鍵崗位人員變更申請表優(yōu)質(zhì)資料
- JJF 1704-2018 望遠(yuǎn)鏡式測距儀校準(zhǔn)規(guī)范
評論
0/150
提交評論