版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
工程經(jīng)濟學第2講Sean含答案工程經(jīng)濟學第2講Sean含答案工程經(jīng)濟學第2講Sean含答案工程經(jīng)濟學第2講Sean含答案工程經(jīng)濟學第2講Sean含答案Timevalueofmoney1.Interest:thecostofmoney2.Economicequivalent3.Interestformulasforsinglecashflows4.Uneven-paymentseries5.Equal-paymentseries6.Dealingwithgradientseries7.Compositecashflows8.Today’stakeaway2Timevalueofmoney1.InterestMoneyisacommodity,moneycostsmoneyThecostofmoneyisestablishedandmeasuredbyaninterestrateWhatisinterestrate?3Moneyisacommodity,moneyco1.Interest:thecostofmoney(1).Thetimevalueofmoney(2).Elementsoftransactionsinvolvinginterest(3).Methodofcalculatinginterest41.Interest:thecostofmoney(1).ThetimevalueofmoneyAnexampleWhatdoesthisexampleillustrate?WemustconnectearningpowerandpurchasingpowertotheconceptoftimeItalsoreflectsthatmoneyhasatimevaluePrincipleofthetimevalueofmoneyTheeconomicvalueofasumdependsonwhenthesumisreceivedAdollarreceivedtodayhasagreatervaluethanadollarreceivedatsomefuturetimeMarketinterestrate(usedinthetext)Considerstheearningpowerofmoneyaswellastheeffectofinflationperceivedinthemarketplace5(1).ThetimevalueofmoneyAnGainsachievedorlossesincurredbydelayingconsumption$100$106$108$104$106Case1:InflationExceedsearingpowerCase2:EaringpowerExceedsInflationYourmoneyYourmoneyPeriod1Period0CostofrefrigeratorCostofrefrigeratorNetloss$2Netgain$26Gainsachievedorlossesincur
(2).Elementsoftransactionsinvolvinginterest
ElementsarecommontoallthetypesoftransactionsCashflowdiagramsEnd-of-periodconventionInpractice,cashflowscanoccuratthebeginningorinthemiddleofaninterestperiodoratpracticallyanypointintimeOneofthesimplifyingassumptionswemakeinengineeringeconomicanalysisistheend-of-periodconventionend-of-periodconventionisthepracticeofplacingallcashflowtransactionsattheendofaninterestperiod7
(2).ElementsoftransactionsElementsPrincipal(P)Interestrate(i)Interestperiod(n)Numberofinterestperiods(N)Aplanforreceiptsordisbursements(An)Afutureamountofmoney(F)8ElementsPrincipal(P)8Cashflowdiagrams$22,123$6215$6720$883510,324$10,815i=7%0123459Cashflowdiagrams$22,123$62151010AcashflowdiagramforSabathia’scontractwiththeNewYorkYankees.11AcashflowdiagramforSabath(3).MethodofcalculatinginterestSimpleinterestF=P(1+iN)CompoundinterestF=P(1+i)N12(3).Methodofcalculatinginte2.EconomicequivalentHowtomeasuretimevalueofmoneyWhetherweshouldprefertohave$20,000today,and$50,000tenyearsfromnowor$8,000eachyearforthenext10years?Method:economicequivalenceAcashflowthatcanbeconvertedtoanequivalentcashflowatanypointintimeAnexample132.EconomicequivalentHowtomAnexampleSupposeyouareofferedthealternativeofreceivingeither$3,000attheendoffiveyearsorPdollarstoday.Becauseyouhavenocurrentneedforthemoney,youwoulddepositthePdollarsinanaccountthatpays8%interest.WhatvalueofPwouldmakeyouindifferenttoyourchoicebetweenPdollarstodayandthepromiseof$3,000attheendoffiveyears?Solution:GivenF=$3,000,N=5years,i=8%peryearFindPP=F/(1+i)NP=3,000/(1+0.08)5=$2,04214AnexampleSupposeyouareoff3.Interestformulasforsinglecashflows(1).Compound-amountfactor(復利系數(shù))(2).Present-worthfactor(現(xiàn)值系數(shù))(3).Solvingfortime(4).Solvingforinterest(5).Interpolationininteresttables153.Interestformulasforsingl(1).Compound-amountfactorGivenP,i,NFindFF=P(1+i)N(1+i)Nisknownasthecompound-amountfactorInteresttablesinappendixAHowtouseappendixAtofindFF=P(1+i)N=P(F/P,i,N)factornotation16(1).Compound-amountfactorGive(2).Present-worthfactorGivenF,i,NFindPP=F[1/(1+i)N]=F(P/F,i,N)
1/(1+i)Nisknownasthepresent-worthfactor17(2).Present-worthfactorGivenAnexampleGivenF=$1,000,i=6%,N=8FindPP=$1,000(P/F,6%,8)=$627.40P=?$1,00008yearsi=6%peryear18AnexampleGivenF=$1,000,i=6%(3).SolvingfortimeGivenF,i,PFindN19(3).SolvingfortimeGivenF,iAnexampleGivenF=$6,000,i=8%,P=$3,000FindNF=P(1+i)NUsingExcelN=NPER(8%,0,-3000,6000)=9$3,000$6,0000N=?yearsi=8%peryear20AnexampleGivenF=$6,000,i=8%(4).SolvingforinterestGivenF,N,PFindi21(4).SolvingforinterestGivenAnexampleGivenF=$20,N=5,P=$10FindiF=P(1+i)NUsingExceli=RATE(5,0,-10,20)=14.87%$10$2005yearsi=?22AnexampleGivenF=$20,N=5,P=Doublingtimeestimatesusingtheruleof72andtheactualtimeusingcompoundinterestcalculationsrateofreturn(%)rule-of-72estimatesactualyears1727023635.3514.414.3107.27.5203.63.9401.8223DoublingtimeestimatesusingCASEDeterminethevalueoftheA/Pfactorforaninterestrateof7.3%andnof10years.Thatis(A/P,7.3%,10)24CASEDeterminethevalueofthe(5).Interpolationininteresttables7%7.3%8%0.14238X0.14903線性內(nèi)插(7.3-7)/(8-7.3)=(x-0.14238)/(0.14903-X)x=0.14338DeterminethevalueoftheA/Pfactorforaninterestrateof7.3%andnof10years.Thatis(A/P,7.3%,10)25(5).Interpolationininterest4.Uneven-paymentseriesWhatisuneven-paymentseries264.Uneven-paymentseriesWhatiDecompositionofunevencashflowseries27DecompositionofunevencashfAnexampleGiven:unevencashflowasthepicture,i=10%peryearFindPP=25,000(P/F,10%,1)+3,000(P/F,10%,2)+5,000(P/F,10%,4)Result:$28,622P=?$25,0000$5,000yearsi=?$3,00028AnexampleGiven:unevencashfAfuture-valuecalculationwithchanginginterestrates29Afuture-valuecalculationwitF=300(1+0.05)(1+0.06)(1+0.06)(1+0.04)(1+0.04)+500(1+0.06)(1+0.04)(1+0.04)+400(1+0.04)Result:$1,372OrF={[300(F/P,5%,1)(F/P,6%,1)+500](F/P,6%,1)(F/P,4%,1)+400}(F/P,4%,1)30F=300(1+0.05)(1+0.06)(1+0.06)(5.Equal-paymentseries(1).Compound-amountfactor(復利系數(shù))(2).Sinking-fundfactor(償債基金系數(shù))(3).Capital-recoveryfactor(Annuityfactor)(資本回收系數(shù))(4).Present-worthfactor(現(xiàn)值系數(shù))(5).Presentvalueofperpetuities(永久年金)315.Equal-paymentseries(1).Com(1).Compound-amountfactorEqual-payment-seriescompound-amountfactorF=A{[(1+i)N-1]/i}=A(F/A,i,N)Howtogetit?(seetheprocess)Methodof
calculationInteresttablesinappendixA32(1).Compound-amountfactorEquaTheprocessF=A+A(1+i)+A(1+i)2+…+A(1+i)N-1[Eq.1]Multiplyingitby(1+i)resultinF(1+i)=A(1+i)+A(1+i)2+…+A(1+i)N[Eq.2]Subtracting[Eq.1]from[Eq.2]getsF(1+i)-F=-A+A(1+i)NSolvingforFyieldsF=A{[(1+i)N-1]/i}=A(F/A,i,N)FA0NN-133TheprocessF=A+A(1+i)+A(1+i)2+AcaseGiven:A=$5,000,N=5,i=6%FindFF=$5,000(F/A,6%,5)=$28,185.46CanalsoutilizeExcel,thefollowingfinancialcommandFV(6%,5,5000,0)yearsi=6%0$5,000F=?$5,00034AcaseGiven:A=$5,000,N=5,i=(2).Sinking-fundfactorSinking-fundfactorFromEq.F=A{[(1+i)N-1]/i},wecangetA=F{i/[(1+i)N-1]/}=F(A/F,i,N)35(2).Sinking-fundfactorSinkingAcaseGiven:cashflowasthepicture,N=5,i=7%,F=10,000FindAA=$10,000(A/F,7%,5)=$1,739yearsi=7%0A=?F=10,000536AcaseGiven:cashflowasthe(3).Capital-recoveryfactor(Annuityfactor)Capital-recoveryfactor(Annuityfactor)FromA=F{i/[(1+i)N-1]/}andF=P(1+i)NwegetA=P{i(1+i)N/[(1+i)N-1]}=P(A/P,i,N)37(3).Capital-recoveryfactor(AAcaseGiven:P=$21,061.82,N=5,i=6%FindAA=$21,061.82(A/P,6%,5)=$5,000yearsi=6%0A=?P=$21,061.82538AcaseGiven:P=$21,061.82,N=5(4).Present-worthfactorPresentworthfactorBecauseA=P{i(1+i)N/[(1+i)N-1]},soP=A{[(1+i)N-1]/i(1+i)N}=A(P/A,i,N)39(4).Present-worthfactorPresenAcaseGiven:A=$7.92million,N=25,i=8%FindPP=$7.92(P/A,8%,25)=$84.54millionyearsi=8%0A=$7.92millionP=?2540AcaseGiven:A=$7.92million,(5).PresentvalueofperpetuitiesP=A{[(1+i)N-1]/i(1+i)N}TakealimitontheEq.bylettingN→∞,wegettheclosed-formsulutionP=A/iyears0AP=?N→∞41(5).Presentvalueofperpetuit6.Dealingwithgradientseries(1).Lineargradientseries(線性梯度系列)(2).geometricgradientseries(幾何梯度系列)426.Dealingwithgradientserie(1).LineargradientseriesStrictgradientseries:Cashflowincreaseordecreasebyasetofamount,G,thegradientamountThepresent-worthfactorofgradientlinearLineargradientseriesascompositeseries43(1).LineargradientseriesStriStrictgradientseries44Strictgradientseries44Twotypesoflinear-gradientseriesascompositesofauniformseriesofNpaymentsofA1andthegradientseriesofincrementsofconstantamountG.45Twotypesoflinear-gradientsThepresent-worthfactoroflineargradientP=0+G/(1+i)2+2G/(1+i)3+…+(N-1)G/(1+i)NP=G{[(1+i)N-iN-1]/i2(1+i)N}P=G(P/G,i,N)Thegradient-seriespresent-worthfactor:P=G{[(1+i)N-iN-1]/i2(1+i)N}46Thepresent-worthfactorofliLineargradientseriesascompositeseriesA1+GA1+(N-1)GG01234N-1N(N-1)G+A1=01234N-1N01234N-1N47Lineargradientseriesascomp(2).geometricgradientseriesGeometricgradientseriesThegeometric-gradient-seriespresent-worthfactorAnalternativeforthegeometric-gradient-seriespresent-worthfactor48(2).geometricgradientseriesGAgeometricallyincreasingordecreasinggradientseriesataconstantrateg49AgeometricallyincreasingorThegeometric-gradient-seriespresent-worthfactorPn=An(1+i)-n=A1(1+g)n-1(1+i)-nThegeometric-gradient-seriespresent-worthfactorIfi=g,P=A1N/(1+i)Ifi≠g,P=A1[1-(1+g)N(1+i)-N]/(i-g)50Thegeometric-gradient-seriesAnothermethodforthegeometric-gradient-seriesP=[A1/(1+g)]∑[(1+g)/(1+i)]^nAssume[1/(1+g’)]^n=[(1+g)/(1+i)]^nYieldsg’=(i-g)/(1+g)RewritepasfollowsP=[A1/(1+g)]∑[(1+g)/(1+i)]^n=[A1/(1+g)]∑{1/[1+(i-g)/(1+g)]^n}=[A1/(1+g)]∑(1+g’)^(-n)=[A1/(1+g)](P/A,g’,N)51Anothermethodforthegeometr5252SummaryofDiscreteCompoundingFormulaswithDiscretePayments53SummaryofDiscreteCompoundin7.CompositecashflowsInfact,manyinvestmentprojectscontainmixedtypesofcashflows.547.CompositecashflowsInfactStartsavingmoneyassoonaspossibleTwosavingsplansstartingattheageof21Option1:Save2000ayearfor10years,attheendof10years,makenofutureinvestments,butinvesttheamountaccumulatedattheendof10yearsuntilyoureachtheageof65.assumethatthefirstdepositwillbemadewhenyouare22.Option2:Donothingforthefirst10years,startsaving2000ayeareveryyearthereafteruntilyoureachtheageof65.assumethefirstdepositwillbemadewhenyouturn32.Theinterestrateis8%,whichoptionwouldresultinmoremoney?55Startsavingmoneyassoonas222331…65Option1213233…2,0002,0002,000F?222331…65Option2213233…2,0002,0002,000F?Answer56222331…65Option1213233…2,0002Foroption1F=2000(F/A,8%,10)(F/P,8%,34)=2000*14.4866*13.6901=396,646Foroption2F=2000(F/A,8%,34)=2000*158.6267=317,253Sooption1resultsinmoremoney.Anyothercomparisonway?57Foroption1AnyothercomparisFindpresentworthforalineargradientseriesChoosinghowtoreceiveyourwinningsOption1:receive3.44millioninonelumpsumOption2:receiveingradientannualpayments,theinitialis175,000,thefirstis189,000,therestswouldincreaseeachyearby7,000toafinalpaymentof357,000.Iftheinterestrateis4.5%.Whichonewouldyouprefer?58Findpresentworthforalinea3.44million123…25tOption1123…25tOption2175,000189,000189,000+7000189,000+7000*2189,000+7000*(t-1)357,000Answer2593.44million123…25tOption1123ForthesecondoptionP=175,000+G(P/G,4.5%,25)+A1(P/A,4.5%,25)(P/G,4%,25)=156.1040;(P/G,5%,25)=134.2275--
(P/G,4.5%,25)=145.1658(P/A,4%,25)=15.6221;(P/A,5%,25)=14.0939--
(P/A,4.5%,25)=14.858P=175,000+7000*145.1658+189,000*14.858=3,999,322.6>3.44millionSochoosethesecondoption60Forthesecondoption60Requiredcost-of-livingadjustmentcalculationSupposethatyourretirementbenefitsduringyourfirstyearofretirementare50,000.assumethatthisamountisjustenoughtomeetyourcostoflivingduringthefirstyear.However,yourcostoflivingisexpectedtoincreaseatanannualrateof5%,duetoinflation.Supposeyoudonotexpecttoreceiveanycostoflivingadjustmentinyourr
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年山西金融職業(yè)學院單招綜合素質(zhì)筆試備考試題含詳細答案解析
- 2026年齊齊哈爾高等師范??茖W校單招職業(yè)技能考試參考題庫含詳細答案解析
- 2026年唐山職業(yè)技術學院高職單招職業(yè)適應性測試備考試題及答案詳細解析
- 2026年上海應用技術大學單招職業(yè)技能考試備考題庫含詳細答案解析
- 2026年江蘇城市職業(yè)學院江都辦學點單招職業(yè)技能考試備考題庫含詳細答案解析
- 2026年廣東工程職業(yè)技術學院單招職業(yè)技能考試模擬試題含詳細答案解析
- 2026年浙江長征職業(yè)技術學院單招職業(yè)技能考試備考題庫含詳細答案解析
- 2026年廣西經(jīng)貿(mào)職業(yè)技術學院單招綜合素質(zhì)筆試模擬試題含詳細答案解析
- 2026年黑龍江農(nóng)墾科技職業(yè)學院單招綜合素質(zhì)考試模擬試題含詳細答案解析
- 2026年西安電力高等專科學校高職單招職業(yè)適應性測試模擬試題及答案詳細解析
- GB/T 45133-2025氣體分析混合氣體組成的測定基于單點和兩點校準的比較法
- 腦機接口與慢性疼痛管理-深度研究
- 九年級下冊語文必背古詩文(字帖描紅)
- 北京市行業(yè)用水定額匯編(2024年版)
- 婚內(nèi)財產(chǎn)協(xié)議書標準版
- 基于大數(shù)據(jù)的金融風險評估模型構(gòu)建
- 供應鏈與生產(chǎn)制造L1-L4級高階流程規(guī)劃框架 相關兩份資料
- 光伏電站施工管理要點培訓
- 國際貿(mào)易合同履行中的運輸保險索賠程序與操作指南
- 龍澤滴灌帶生產(chǎn)項目可行性研究報告
- 運動系統(tǒng)疾病
評論
0/150
提交評論