版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
19UCI816-ARTIFICIALINTELLIGENCEANDROBOTICS
UNIT1
ArtificialIntelligenceisamethodofmakingacomputer,acomputer-controlledrobot,orasoftwarethinkintelligentlylikethehumanmind.AIisaccomplishedbystudyingthepatternsofthehumanbrainandbyanalyzingthecognitiveprocess.Theoutcomeofthesestudiesdevelopsintelligentsoftwareandsystems.
Artificialintelligenceallowsmachinestounderstandandachievespecificgoals.AIincludesmachinelearningviadeeplearning.Theformerreferstomachinesautomaticallylearningfromexistingdatawithoutbeingassistedbyhumanbeings.Deeplearningallowsthemachinetoabsorbhugeamountsofunstructureddatasuchastext,images,andaudio.
HistoryofArtificialIntelligence
ArtificialIntelligenceisnotanewwordandnotanewtechnologyforresearchers.Thistechnologyismucholderthanyouwouldimagine.EventherearethemythsofMechanicalmeninAncientGreekandEgyptianMyths.FollowingaresomemilestonesinthehistoryofAIwhichdefinesthejourneyfromtheAIgenerationtotilldatedevelopment.
ThebirthofArtificialIntelligence(1952-1956)
Year1955:
AnAllenNewellandHerbertA.Simoncreatedthe"firstartificialintelligenceprogram"Whichwasnamedas
"LogicTheorist".Thisprogramhadproved38of52Mathematicstheorems,andfindnewandmoreelegantproofsforsometheorems.
Year1956:
Theword"ArtificialIntelligence"firstadoptedbyAmericanComputerscientistJohnMcCarthyattheDartmouthConference.Forthefirsttime,AIcoinedasanacademicfield.
Atthattimehigh-levelcomputerlanguagessuchasFORTRAN,LISP,orCOBOLwereinvented.AndtheenthusiasmforAIwasveryhighatthattime.
Thegoldenyears-Earlyenthusiasm(1956-1974)
Year1966:
Theresearchersemphasizeddevelopingalgorithmswhichcansolvemathematicalproblems.JosephWeizenbaumcreatedthefirstchatbotin1966,whichwasnamedasELIZA.
Year1972:
ThefirstintelligenthumanoidrobotwasbuiltinJapanwhichwasnamedasWABOT-1.
ThefirstAIwinter(1974-1980)
Thedurationbetweenyears1974to1980wasthefirstAIwinterduration.AIwinterreferstothetimeperiodwherecomputerscientistdealtwithasevereshortageoffundingfromgovernmentforAIresearches.
DuringAIwinters,aninterestofpublicityonartificialintelligencewasdecreased.
AboomofAI(1980-1987)
Year1980:
AfterAIwinterduration,AIcamebackwith"ExpertSystem".Expertsystemswereprogrammedthatemulatethedecision-makingabilityofahumanexpert.
IntheYear1980,thefirstnationalconferenceoftheAmericanAssociationofArtificialIntelligence
washeldatStanfordUniversity.
ThesecondAIwinter(1987-1993)
Thedurationbetweentheyears1987to1993wasthesecondAIWinterduration.
AgainInvestorsandgovernmentstoppedinfundingforAIresearchasduetohighcostbutnotefficientresult.TheexpertsystemsuchasXCONwasverycosteffective.
Theemergenceofintelligentagents(1993-2011)
Year1997:
Intheyear1997,IBMDeepBluebeatsworldchesschampion,GaryKasparov,andbecamethefirstcomputertobeataworldchesschampion.
Year2002:
forthefirsttime,AIenteredthehomeintheformofRoomba,avacuumcleaner.
Year2006:
AIcameintheBusinessworldtilltheyear2006.CompanieslikeFacebook,Twitter,andNetflixalsostartedusingAI.
Deeplearning,bigdataandartificialgeneralintelligence(2011-present)
Year2011:
Intheyear2011,IBM'sWatsonwonjeopardy,aquizshow,whereithadtosolvethecomplexquestionsaswellasriddles.Watsonhadprovedthatitcouldunderstandnaturallanguageandcansolvetrickyquestionsquickly.
Year2012:
GooglehaslaunchedanAndroidappfeature"Googlenow",whichwasabletoprovideinformationtotheuserasaprediction.
Year2014:
Intheyear2014,Chatbot"EugeneGoostman"wonacompetitionintheinfamous"Turingtest."
Year2018:
The"ProjectDebater"fromIBMdebatedoncomplextopicswithtwomasterdebatersandalsoperformedextremelywell.
GooglehasdemonstratedanAIprogram"Duplex"whichwasavirtualassistantandwhichhadtakenhairdresserappointmentoncall,andladyonothersidedidn'tnoticethatshewastalkingwiththemachine.
NowAIhasdevelopedtoaremarkablelevel.TheconceptofDeeplearning,bigdata,anddatasciencearenowtrendinglikeaboom.NowadayscompanieslikeGoogle,Facebook,IBM,andAmazonareworkingwithAIandcreatingamazingdevices.ThefutureofArtificialIntelligenceisinspiringandwillcomewithhighintelligence.
Actinghumanly
ThefirstproposalforsuccessinbuildingaprogramandactshumanlywastheTuringTest.Tobeconsideredintelligentaprogrammustbeabletoactsufficientlylikeahumantofoolaninterrogator.Ahumaninterrogatestheprogramandanotherhumanviaaterminalsimultaneously.Ifafterareasonableperiod,theinterrogatorcannottellwhichiswhich,theprogrampasses.
Topassthistestrequires:
naturallanguageprocessing
knowledgerepresentation
automatedreasoning
machinelearning
Thistestavoidsphysicalcontactandconcentrateson"higherlevel"mentalfaculties.A
total
Turingtestwouldrequiretheprogramtoalsodo:
computervision
robotics
ThinkingHumanly
Thisrequires"gettinginside"ofthehumanmindtoseehowitworksandthencomparingourcomputerprogramstothis.Thisiswhat
cognitive
science
attemptstodo.Anotherwaytodothisistoobserveahumanproblemsolvingandarguethatone'sprogramsgoaboutproblemsolvinginasimilarway.
Example:
GPS(GeneralProblemSolver)wasanearlycomputerprogramthatattemptedtomodelhumanthinking.ThedeveloperswerenotsomuchinterestedinwhetherornotGPSsolvedproblemscorrectly.Theyweremoreinterestedinshowingthatitsolvedproblemslikepeople,goingthroughthesamestepsandtakingaroundthesameamountoftimetoperformthosesteps.
ThinkingRationally
Aristotlewasoneofthefirsttoattempttocodify"thinking".His
syllogisms
providedpatternsofargumentstructurethatalwaysgavecorrectconclusions,givingcorrectpremises.
Example:Allcomputersuseenergy.Usingenergyalwaysgeneratesheat.Therefore,allcomputersgenerateheat.
Thisinitiatethefieldof
logic.Formallogicwasdevelopedinthelatenineteenthcentury.Thiswasthefirststeptowardenablingcomputerprogramstoreasonlogically.
By1965,programsexistedthatcould,givenenoughtimeandmemory,takeadescriptionoftheprobleminlogicalnotationandfindthesolution,ifoneexisted.The
logicist
traditioninAIhopestobuildonsuchprogramstocreateintelligence.
Therearetwomainobstaclestothisapproach:First,itisdifficulttomakeinformalknowledgepreciseenoughtousethelogicistapproachparticularlywhenthereisuncertaintyintheknowledge.Second,thereisabigdifferencebetweenbeingabletosolveaprobleminprincipleanddoingsoinpractice.
ActingRationally:Therationalagentapproach
Actingrationallymeansactingsoastoachieveone'sgoals,givenone'sbeliefs.An
agent
isjustsomethingthatperceivesandacts.
InthelogicalapproachtoAI,theemphasisisoncorrectinferences.Thisisoftenpartofbeingarationalagentbecauseonewaytoactrationallyistoreasonlogicallyandthenactononesconclusions.Butthisisnotallofrationalitybecauseagentsoftenfindthemselvesinsituationswherethereisnoprovablycorrectthingtodo,yettheymustdosomething.
Therearealsowaystoactrationallythatdonotseemtoinvolveinference,e.g.,reflexactions.
ThestudyofAIasrationalagentdesignhastwoadvantages:
Itismoregeneralthanthelogicalapproachbecausecorrectinferenceisonlyausefulmechanismforachievingrationality,notanecessaryone.
Itismoreamenabletoscientificdevelopmentthanapproachesbasedonhumanbehaviourorhumanthoughtbecauseastandardofrationalitycanbedefinedindependentofhumans.
Achievingperfectrationalityincomplexenvironmentsisnotpossiblebecausethecomputationaldemandsaretoohigh.However,wewillstudyperfectrationalityasastartingplace.
cognitivemodeling
Cognitivemodellingisanareaofcomputersciencethatdealswithsimulatinghumanproblem-solvingandmentalprocessinginacomputerizedmodel.Suchamodelcanbeusedtosimulateorpredicthumanbehaviourorperformanceontaskssimilartotheonesmodelledandimprovehuman-computerinteraction
Cognitivemodellingisusedinnumerousartificialintelligence(
AI
)applications,suchas
expertsystems
,
naturallanguageprocessing
,
neuralnetworks
,andinroboticsandvirtualrealityapplications.Cognitivemodelsarealsousedtoimproveproductsinmanufacturingsegments,suchas
humanfactors
,engineering,andcomputergameanduserinterfacedesign.
Anadvancedapplicationofcognitivemodellingisthecreationofcognitivemachines,whichareAIprogramsthatapproximatesomeareasofhumancognition.OneofthegoalsofSandia'sprojectistomakehuman-computerinteractionmorelikeaninteractionbetweentwohumans.
Typesofcognitivemodels
Somehighlysophisticatedprogramsmodelspecificintellectualprocesses.Techniquessuchasdiscrepancydetectionareusedtoimprovethesecomplexmodels.
Discrepancydetectionsystemssignalwhenthereisadifferencebetweenanindividual'sactualstateorbehaviorandtheexpectedstateorbehaviorasperthecognitivemodel.Thatinformationisthenusedtoincreasethecomplexityofthemodel.
Anothertypeofcognitivemodelistheneuralnetwork.Thismodelwasfirsthypothesizedinthe1940s,butithasonlyrecentlybecomepracticalthankstoadvancementsindataprocessingandtheaccumulationoflargeamountsofdatatotrain
algorithms
.
Neuralnetworksworksimilarlytothehumanbrainbyrunningtrainingdatathroughalargenumberofcomputationalnodes,calledartificialneurons,whichpassinformationbackandforthbetweeneachother.Byaccumulatinginformationinthisdistributedway,applicationscanmakepredictionsaboutfutureinputs.
R
einforcementlearning
isanincreasinglyprominentareaofcognitivemodeling.Thisapproachhasalgorithmsrunthroughmanyiterationsofataskthattakesmultiplesteps,incentivizingactionsthateventuallyproducepositiveoutcomes,whilepenalizingactionsthatleadtonegativeones.ThisisaprimarypartoftheAIalgorithmthatGoogle's
DeepMind
usedforitsAlphaGoapplication,whichbestedthetophumanGoplayersin2016
Thesemodels,whichcanalsobeusedinnaturallanguageprocessingandsmartassistantapplications,haveimprovedhuman-computerinteraction,makingitpossibleformachinestohaverudimentaryconversationswithhumans.
AgentsinArtificialIntelligence
AnAIsystemcanbedefinedasthestudyoftherationalagentanditsenvironment.Theagentssensetheenvironmentthroughsensorsandactontheirenvironmentthroughactuators.AnAIagentcanhavementalpropertiessuchasknowledge,belief,intention,etc.
WhatisanAgent?
Anagentcanbeanythingthatperceiveitsenvironmentthroughsensorsandactuponthatenvironmentthroughactuators.AnAgentrunsinthecycleof
perceiving,
thinking,and
acting.Anagentcanbe:
Human-Agent:
Ahumanagenthaseyes,ears,andotherorganswhichworkforsensorsandhand,legs,vocaltractworkforactuators.
RoboticAgent:
Aroboticagentcanhavecameras,infraredrangefinder,NLPforsensorsandvariousmotorsforactuators.
SoftwareAgent:
Softwareagentcanhavekeystrokes,filecontentsassensoryinputandactonthoseinputsanddisplayoutputonthescreen.
Sensor:
Sensorisadevicewhichdetectsthechangeintheenvironmentandsendstheinformationtootherelectronicdevices.Anagentobservesitsenvironmentthroughsensors.
Actuators:
Actuatorsarethecomponentofmachinesthatconvertsenergyintomotion.Theactuatorsareonlyresponsibleformovingandcontrollingasystem.Anactuatorcanbeanelectricmotor,gears,rails,etc.
Effectors:
Effectorsarethedeviceswhichaffecttheenvironment.Effectorscanbelegs,wheels,arms,fingers,wings,fins,anddisplayscreen.
IntelligentAgents:
Anintelligentagentisanautonomousentitywhichactsuponanenvironmentusingsensorsandactuatorsforachievinggoals.Anintelligentagentmaylearnfromtheenvironmenttoachievetheirgoals.Athermostatisanexampleofanintelligentagent.
FollowingarethemainfourrulesforanAIagent:
Rule1:
AnAIagentmusthavetheabilitytoperceivetheenvironment.
Rule2:
Theobservationmustbeusedtomakedecisions.
Rule3:
Decisionshouldresultinanaction.
Rule4:
TheactiontakenbyanAIagentmustbearationalaction.
RationalAgent:
Arationalagentisanagentwhichhasclearpreference,modelsuncertainty,andactsinawaytomaximizeitsperformancemeasurewithallpossibleactions.
Arationalagentissaidtoperformtherightthings.AIisaboutcreatingrationalagentstouseforgametheoryanddecisiontheoryforvariousreal-worldscenarios.
ForanAIagent,therationalactionismostimportantbecauseinAIreinforcementlearningalgorithm,foreachbestpossibleaction,agentgetsthepositiverewardandforeachwrongaction,anagentgetsanegativereward.
StructureofanAIAgent
ThetaskofAIistodesignanagentprogramwhichimplementstheagentfunction.Thestructureofanintelligentagentisacombinationofarchitectureandagentprogram.Itcanbeviewedas:
Agent
=
Architecture
+
Agent
program
FollowingarethemainthreetermsinvolvedinthestructureofanAIagent:
Architecture:
ArchitectureismachinerythatanAIagentexecuteson.
AgentFunction:
Agentfunctionisusedtomapapercepttoanaction.
ExampleofAgentswiththeirPEASrepresentation
Agent
Performancemeasure
Environment
Actuators
Sensors
1.MedicalDiagnose
Healthypatient
Minimizedcost
Patient
Hospital
Staff
Tests
Treatments
Keyboard
(Entryofsymptoms)
2.VacuumCleaner
Cleanness
Efficiency
Batterylife
Security
Room
Table
Woodfloor
Carpet
Variousobstacles
Wheels
Brushes
VacuumExtractor
Camera
Dirtdetectionsensor
Cliffsensor
BumpSensor
InfraredWallSensor
3.Part-pickingRobot
Percentageofpartsincorrectbins.
Conveyorbeltwithparts,
Bins
JointedArms
Hand
Camera
Jointanglesensors.
ProblemSolvinginArtificialIntelligence
ThereflexagentofAIdirectlymapsstatesintoaction.Whenevertheseagentsfailtooperateinanenvironmentwherethestateofmappingistoolargeandnoteasilyperformedbytheagent,thenthestatedproblemdissolvesandsenttoaproblem-solvingdomainwhichbreaksthelargestoredproblemintothesmallerstorageareaandresolvesonebyone.Thefinalintegratedactionwillbethedesiredoutcomes.
Onthebasisoftheproblemandtheirworkingdomain,differenttypesofproblem-solvingagentdefinedanduseatanatomiclevelwithoutanyinternalstatevisiblewithaproblem-solvingalgorithm.Theproblem-solvingagentperformspreciselybydefiningproblemsandseveralsolutions.Sowecansaythatproblemsolvingisapartofartificialintelligencethatencompassesanumberoftechniquessuchasatree,B-tree,heuristicalgorithmstosolveaproblem.
Wecanalsosaythataproblem-solvingagentisaresult-drivenagentandalwaysfocusesonsatisfyingthegoals.
Stepsproblem-solvinginAI:
TheproblemofAIisdirectlyassociatedwiththenatureofhumansandtheiractivities.Soweneedanumberoffinitestepstosolveaproblemwhichmakeshumaneasyworks.
Thesearethefollowingstepswhichrequiresolvingaproblem:
GoalFormulation:
Thisoneisthefirstandsimplestepinproblem-solving.Itorganizesfinitestepstoformulatetarget/goalswhichrequiresomeactiontoachievethegoal.TodaytheformulationofthegoalisbasedonAIagents.
Problemformulation:
Itisoneofthecorestepsofproblem-solvingwhichdecideswhatactionshouldbetakentoachievetheformulatedgoal.InAIthiscorepartisdependentuponsoftwareagentwhichconsistedofthefollowingcomponentstoformulatetheassociatedproblem.
Componentstoformulatetheassociatedproblem:
InitialState:
ThisstaterequiresaninitialstatefortheproblemwhichstartstheAIagenttowardsaspecifiedgoal.Inthisstatenewmethodsalsoinitializeproblemdomainsolvingbyaspecificclass.
Action:
Thisstageofproblemformulationworkswithfunctionwithaspecificclasstakenfromtheinitialstateandallpossibleactionsdoneinthisstage.
Transition:
Thisstageofproblemformulationintegratestheactualactiondonebythepreviousactionstageandcollectsthefinalstagetoforwardittotheirnextstage.
Goaltest:
Thisstagedeterminesthatthespecifiedgoalachievedbytheintegratedtransitionmodelornot,wheneverthegoalachievesstoptheactionandforwardintothenextstagetodeterminesthecosttoachievethegoal.
Pathcosting:
Thiscomponentofproblem-solvingnumericalassignedwhatwillbethecosttoachievethegoal.Itrequiresallhardwaresoftwareandhumanworkingcost.
Typesofsearchalgorithms:
Therearefortoomanypowerfulsearchalgorithmsouttheretofitinasinglearticle.Instead,thisarticlewilldiscuss
six
ofthefundamentalsearchalgorithms,dividedinto
two
categories,asshownbelow.
UninformedSearchAlgorithms:
Thesearchalgorithmsinthissectionhavenoadditionalinformationonthegoalnodeotherthantheoneprovidedintheproblemdefinition.Theplanstoreachthegoalstatefromthestartstatedifferonlybytheorderand/orlengthofactions.Uninformedsearchisalsocalled
Blindsearch.
Thesealgorithmscanonlygeneratethesuccessorsanddifferentiatebetweenthegoalstateandnongoalstate.
Thefollowinguninformedsearchalgorithmsarediscussedinthissection.
DepthFirstSearch
BreadthFirstSearch
UniformCostSearch
Eachofthesealgorithmswillhave:
Aproblem
graph,
containingthestartnodeSandthegoalnodeG.
A
strategy,
describingthemannerinwhichthegraphwillbetraversedtogettoG.
A
fringe,
whichisadatastructureusedtostoreallthepossiblestates(nodes)thatyoucangofromthecurrentstates.
A
tree,
thatresultswhiletraversingtothegoalnode.
Asolution
plan,
whichthesequenceofnodesfromStoG.
DepthFirstSearch
:
Depth-firstsearch(DFS)isanalgorithmfortraversingorsearchingtreeorgraphdatastructures.Thealgorithmstartsattherootnode(selectingsomearbitrarynodeastherootnodeinthecaseofagraph)andexploresasfaraspossiblealongeachbranchbeforebacktracking.
Ituseslastin-first-outstrategyandhenceitisimplementedusingastack.
Example:
Question.
WhichsolutionwouldDFSfindtomovefromnodeStonodeGifrunonthegraphbelow?
Solution.
Theequivalentsearchtreefortheabovegraphisasfollows.AsDFStraversesthetree“deepestnodefirst”,itwouldalwayspickthedeeperbranchuntilitreachesthesolution(oritrunsoutofnodes,andgoestothenextbranch).Thetraversalisshowninbluearrows.
Path:
?S->A->B->C->G
Breadth-firstsearch(BFS)isanalgorithmfortraversingorsearchingtreeorgraphdatastructures.Itstartsatthetreeroot(orsomearbitrarynodeofagraph,sometimesreferredtoasa‘searchkey’),andexploresalloftheneighbornodesatthepresentdepthpriortomovingontothenodesatthenextdepthlevel.
Itisimplementedusingaqueue.
Example:
Question.
WhichsolutionwouldBFSfindtomovefromnodeStonodeGifrunonthegraphbelow?
Solution.
Theequivalentsearchtreefortheabovegraphisasfollows.AsBFStraversesthetree“shallowestnodefirst”,itwouldalwayspicktheshallowerbranchuntilitreachesthesolution(oritrunsoutofnodes,andgoestothenextbranch).Thetraversalisshowninbluearrows.
Path:
S->D->G
InformedSearchingAlgorithms
Informedsearchalgorithmscontaininformationaboutthegoalstate.Thiswillhelpinmoreefficientsearching.Itcontainsanarrayofknowledgeabouthowcloseisthegoalstatetothepresentstate,pathcost,howtoreachthegoal,etc.Informedsearchalgorithmsareusefulinlargedatabaseswhereuninformedsearchalgorithmscan’tmakeanaccurateresult.
Informedsearchalgorithmsarealsocalledheuristicsearchsinceitusestheideaofheuristics.
Theheuristicfunctionisafunctionusedtomeasuretheclosenessofthecurrentstatetothegoalstateandheuristicpropertiesareusedtofindoutthebestpossiblepathtoreachthegoalstateconcerningthepathcost.
ConsideranexampleofsearchingaplaceyouwanttovisitonGooglemaps.Thecurrentlocationandthedestinationplacearegiventothesearchalgorithmforcalculatingtheaccuratedistance,timetaken,andreal-timetrafficupdatesonthatparticularroute.Thisisexecutedusinginformedsearchalgorithms.
InformedSearchAlgorithms:
Here,thealgorithmshaveinformationonthegoalstate,whichhelpsinmoreefficientsearching.Thisinformationisobtainedbysomethingcalleda
heuristic.
Inthissection,wewilldiscussthefollowingsearchalgorithms.
GreedySearch
A*TreeSearch
A*GraphSearch
SearchHeuristics:
Inaninformedsearch,aheuristicisa
function
thatestimateshowcloseastateistothegoalstate.Forexample–Manhattandistance,Euclideandistance,etc.(Lesserthedistance,closerthegoal.)Differentheuristicsareusedindifferentinformedalgorithmsdiscussedbelow.
GreedySearch:
Ingreedysearch,weexpandthenodeclosesttothegoalnode.The“closeness”isestimatedbyaheuristich(x).
Heuristic:
Aheuristichisdefinedas-
h(x)=Estimateofdistanceofnodexfromthegoalnode.
Lowerthevalueofh(x),closeristhenodefromthegoal.
Strategy:
Expandthenodeclosesttothegoalstate,
i.e.
expandthenodewithalowerhvalue.
Example:
Question.
FindthepathfromStoGusinggreedysearch.Theheuristicvalueshofeachnodebelowthenameofthenode.
Solution.
StartingfromS,wecantraversetoA(h=9)orD(h=5).WechooseD,asithasthelowerheuristiccost.NowfromD,wecanmovetoB(h=4)orE(h=3).WechooseEwithalowerheuristiccost.Finally,fromE,wegotoG(h=0).Thisentiretraversalisshowninthesearchtreebelow,inblue.
Path:
?S->D->E->G
Advantage:
Workswellwithinformedsearchproblems,withfewerstepstoreachagoal.
Disadvantage:
CanturnintounguidedDFSintheworstcase.
A*TreeSearch:
A*TreeSearch,orsimplyknownasA*Search,combinesthestrengthsofuniform-costsearchandgreedysearch.Inthissearch,theheuristicisthesummationofthecostinUCS,denotedbyg(x),andthecostinthegreedysearch,denotedbyh(x).Thesummedcostisdenotedbyf(x).
Heuristic:
ThefollowingpointsshouldbenotedwrtheuristicsinA*search.
Here,h(x)iscalledthe
forwardcost
andisanestimateofthedistanceofthecurrentnodefromthegoalnode.
And,g(x)iscalledthe
backwardcost
andisthecumulativecostofanodefromtherootnode.
A*searchisoptimalonlywhenforallnodes,theforwardcostforanodeh(x)underestimatestheactualcosth*(x)toreachthegoal.Thispropertyof
A*
heuristiciscalled
admissibility.
Admissibility:?
Strategy:
Choosethenodewiththelowestf(x)value.
Example:
Question.
FindthepathtoreachfromStoGusingA*search.
Solution.
StartingfromS,thealgorithmcomputesg(x)+h(x)forallnodesinthefringeateachstep,choosingthenod
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年菏澤職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試模擬試題含詳細(xì)答案解析
- 2026年黑龍江農(nóng)業(yè)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試參考題庫(kù)含詳細(xì)答案解析
- 2026年濱州職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試模擬試題及答案詳細(xì)解析
- 2026年湖北交通職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試模擬試題含詳細(xì)答案解析
- 2026年合肥市廬江縣上半年事業(yè)單位公開招聘工作人員36名參考考試試題及答案解析
- 2026年上海師范大學(xué)單招職業(yè)技能考試備考題庫(kù)含詳細(xì)答案解析
- 2026年西安醫(yī)學(xué)高等專科學(xué)校單招綜合素質(zhì)筆試參考題庫(kù)含詳細(xì)答案解析
- 2026廣東佛山市順德區(qū)杏壇中心小學(xué)臨聘教師招聘9人考試重點(diǎn)題庫(kù)及答案解析
- 2026年甘肅衛(wèi)生職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試模擬試題含詳細(xì)答案解析
- 2026年內(nèi)江衛(wèi)生與健康職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考試題含詳細(xì)答案解析
- 2026年山東藥品食品職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試備考試題含詳細(xì)答案解析
- GB/T 46878-2025二氧化碳捕集、運(yùn)輸和地質(zhì)封存地質(zhì)封存
- 廠區(qū)整改設(shè)計(jì)方案
- 大隱靜脈射頻消融手術(shù)
- (正式版)JBT 3300-2024 平衡重式叉車 整機(jī)試驗(yàn)方法
- 云南省昆明市五華區(qū)2023-2024學(xué)年高一上學(xué)期1月期末考試地理
- HGT 20714-2023 管道及儀表流程圖(P ID)安全審查規(guī)范 (正式版)
- 初高中生物知識(shí)銜接問題分析教學(xué)專業(yè)知識(shí)講座
- 語(yǔ)文高考題小說(shuō)說(shuō)題比賽
- 建筑砌筑工(中級(jí))理論考試題庫(kù)及答案
- 2022-2023學(xué)年安徽省合肥重點(diǎn)中學(xué)七年級(jí)(下)期中數(shù)學(xué)試卷-普通用卷
評(píng)論
0/150
提交評(píng)論