福建省廈門市湖里區(qū)湖里中學(xué)2024年中考一模數(shù)學(xué)試題含解析_第1頁
福建省廈門市湖里區(qū)湖里中學(xué)2024年中考一模數(shù)學(xué)試題含解析_第2頁
福建省廈門市湖里區(qū)湖里中學(xué)2024年中考一模數(shù)學(xué)試題含解析_第3頁
福建省廈門市湖里區(qū)湖里中學(xué)2024年中考一模數(shù)學(xué)試題含解析_第4頁
福建省廈門市湖里區(qū)湖里中學(xué)2024年中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省廈門市湖里區(qū)湖里中學(xué)2024年中考一模數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口,4小時后貨船在小島的正東方向,則貨船的航行速度是()A.7海里/時 B.7海里/時 C.7海里/時 D.28海里/時2.如圖,在平面直角坐標(biāo)系中,△ABC位于第二象限,點B的坐標(biāo)是(﹣5,2),先把△ABC向右平移4個單位長度得到△A1B1C1,再作與△A1B1C1關(guān)于于x軸對稱的△A2B2C2,則點B的對應(yīng)點B2的坐標(biāo)是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)3.下列計算正確的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣64.實數(shù)a,b,c在數(shù)軸上對應(yīng)點的位置如圖所示,則下列結(jié)論中正確的是()A.a(chǎn)+c>0 B.b+c>0 C.a(chǎn)c>bc D.a(chǎn)﹣c>b﹣c5.在娛樂節(jié)目“墻來了!”中,參賽選手背靠水池,迎面沖來一堵泡沫墻,墻上有人物造型的空洞.選手需要按墻上的造型擺出相同的姿勢,才能穿墻而過,否則會被墻推入水池.類似地,有一塊幾何體恰好能以右圖中兩個不同形狀的“姿勢”分別穿過這兩個空洞,則該幾何體為()A. B. C. D.6.下列各數(shù)中最小的是()A.0 B.1 C.﹣ D.﹣π7.如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形8.如圖,已知AB∥CD,AD=CD,∠1=40°,則∠2的度數(shù)為()A.60° B.65° C.70° D.75°9.如圖,不等式組的解集在數(shù)軸上表示正確的是()A. B.C. D.10.已知拋物線y=ax2+bx+c(a<0)與x軸交于點A(﹣1,0),與y軸的交點在(0,2),(0,3)之間(包含端點),頂點坐標(biāo)為(1,n),則下列結(jié)論:①4a+2b<0;②﹣1≤a≤;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個11.在-,,0,-2這四個數(shù)中,最小的數(shù)是()A. B. C.0 D.-212.若||=-,則一定是()A.非正數(shù) B.正數(shù) C.非負數(shù) D.負數(shù)二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知△ABC中,BC=4,AB=2AC,則△ABC面積的最大值為_______.14.如圖,在平面直角坐標(biāo)系中,Rt△ABO的頂點O與原點重合,頂點B在x軸上,∠ABO=90°,OA與反比例函數(shù)y=的圖象交于點D,且OD=2AD,過點D作x軸的垂線交x軸于點C.若S四邊形ABCD=10,則k的值為.15.如圖,P為正方形ABCD內(nèi)一點,PA:PB:PC=1:2:3,則∠APB=_____________.16.如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點P從點B出發(fā),沿BC以2cm/s的速度向點C移動,點Q從點C出發(fā),以1cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發(fā),設(shè)運動時間為ts,當(dāng)t=__________時,△CPQ與△CBA相似.17.科技改變生活,手機導(dǎo)航極大方便了人們的出行.如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導(dǎo)航顯示車輛應(yīng)沿北偏西60°方向行駛6千米至B地,再沿北偏東45°方向行駛一段距離到達古鎮(zhèn)C.小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,則B、C兩地的距離是_____千米.18.在一個暗箱里放有a個除顏色外其他完全相同的球,這a個球中紅球只有3個.每次將球攪拌均勻后,任意摸出一個球記下顏色再放回暗箱.通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.25,那么可以推算出a大約是_________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠1)中的x與y的部分對應(yīng)值如表x

﹣1

1

1

3

y

﹣1

3

5

3

下列結(jié)論:①ac<1;②當(dāng)x>1時,y的值隨x值的增大而減?。?是方程ax2+(b﹣1)x+c=1的一個根;④當(dāng)﹣1<x<3時,ax2+(b﹣1)x+c>1.其中正確的結(jié)論是.20.(6分)某初中學(xué)校舉行毛筆書法大賽,對各年級同學(xué)的獲獎情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問題:請將條形統(tǒng)計圖補全;獲得一等獎的同學(xué)中有來自七年級,有來自八年級,其他同學(xué)均來自九年級,現(xiàn)準備從獲得一等獎的同學(xué)中任選兩人參加市內(nèi)毛筆書法大賽,請通過列表或畫樹狀圖求所選出的兩人中既有七年級又有九年級同學(xué)的概率.21.(6分)如圖,△ABC是⊙O的內(nèi)接三角形,點D在上,點E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長;②當(dāng)為何值時,AB?AC的值最大?22.(8分)如圖1,在四邊形ABCD中,AB=AD.∠B+∠ADC=180°,點E,F(xiàn)分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.圖1圖2圖3(1)思路梳理將△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點F,D,G三點共線.易證△AFG,故EF,BE,DF之間的數(shù)量關(guān)系為;(2)類比引申如圖2,在圖1的條件下,若點E,F(xiàn)由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.(3)聯(lián)想拓展如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°.若BD=1,EC=2,則DE的長為.23.(8分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).24.(10分)閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.(1)在圖1中證明小胖的發(fā)現(xiàn);借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).25.(10分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別交x軸、y軸于A、B兩點,與反比例函數(shù)的圖象交于C、D兩點.已知點C的坐標(biāo)是(6,-1),D(n,3).求m的值和點D的坐標(biāo).求的值.根據(jù)圖象直接寫出:當(dāng)x為何值時,一次函數(shù)的值大于反比例函數(shù)的值?26.(12分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過AC的中點D,E為⊙O上的一點,連接DE,BE,DE與AB交于點F.求證:BC為⊙O的切線;若F為OA的中點,⊙O的半徑為2,求BE的長.27.(12分)解分式方程:.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題解析:設(shè)貨船的航行速度為海里/時,小時后貨船在點處,作于點.由題意海里,海里,在中,所以在中,所以所以解得:故選A.2、D【解析】

首先利用平移的性質(zhì)得到△A1B1C1中點B的對應(yīng)點B1坐標(biāo),進而利用關(guān)于x軸對稱點的性質(zhì)得到△A2B2C2中B2的坐標(biāo),即可得出答案.【詳解】解:把△ABC向右平移4個單位長度得到△A1B1C1,此時點B(-5,2)的對應(yīng)點B1坐標(biāo)為(-1,2),則與△A1B1C1關(guān)于于x軸對稱的△A2B2C2中B2的坐標(biāo)為(-1,-2),故選D.【點睛】此題主要考查了平移變換以及軸對稱變換,正確掌握變換規(guī)律是解題關(guān)鍵.3、C【解析】

分別根據(jù)二次根式的定義,乘方的意義,負指數(shù)冪的意義以及絕對值的定義解答即可.【詳解】=3,故選項A不合題意;﹣32=﹣9,故選項B不合題意;(﹣3)﹣2=,故選項C符合題意;﹣3+|﹣3|=﹣3+3=0,故選項D不合題意.故選C.【點睛】本題主要考查了二次根式的定義,乘方的定義、負指數(shù)冪的意義以及絕對值的定義,熟記定義是解答本題的關(guān)鍵.4、D【解析】分析:根據(jù)圖示,可得:c<b<0<a,,據(jù)此逐項判定即可.詳解:∵c<0<a,|c|>|a|,∴a+c<0,∴選項A不符合題意;∵c<b<0,∴b+c<0,∴選項B不符合題意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴選項C不符合題意;∵a>b,∴a﹣c>b﹣c,∴選項D符合題意.故選D.點睛:此題考查了數(shù)軸,考查了有理數(shù)的大小比較關(guān)系,考查了不等關(guān)系與不等式.熟記有理數(shù)大小比較法則,即正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù).5、C【解析】試題分析:通過圖示可知,要想通過圓,則可以是圓柱、圓錐、球,而能通過三角形的只能是圓錐,綜合可知只有圓錐符合條件.故選C6、D【解析】

根據(jù)任意兩個實數(shù)都可以比較大?。龑崝?shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小即可判斷.【詳解】﹣π<﹣<0<1.則最小的數(shù)是﹣π.故選:D.【點睛】本題考查了實數(shù)大小的比較,理解任意兩個實數(shù)都可以比較大小.正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小是關(guān)鍵.7、C【解析】A選項,∵在△ABC中,點D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項,∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項,因為添加條件“AD平分∠BAC”結(jié)合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯誤;D選項,因為由添加的條件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結(jié)合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.8、C【解析】

由等腰三角形的性質(zhì)可求∠ACD=70°,由平行線的性質(zhì)可求解.【詳解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故選:C.【點睛】本題考查了等腰三角形的性質(zhì),平行線的性質(zhì),是基礎(chǔ)題.9、B【解析】

首先分別解出兩個不等式,再確定不等式組的解集,然后在數(shù)軸上表示即可.【詳解】解:解第一個不等式得:x>-1;解第二個不等式得:x≤1,在數(shù)軸上表示,故選B.【點睛】此題主要考查了解一元一次不等式組,以及在數(shù)軸上表示解集,把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<“>”要用空心圓點表示.10、C【解析】

①由拋物線的頂點橫坐標(biāo)可得出b=-2a,進而可得出4a+2b=0,結(jié)論①錯誤;

②利用一次函數(shù)圖象上點的坐標(biāo)特征結(jié)合b=-2a可得出a=-,再結(jié)合拋物線與y軸交點的位置即可得出-1≤a≤-,結(jié)論②正確;

③由拋物線的頂點坐標(biāo)及a<0,可得出n=a+b+c,且n≥ax2+bx+c,進而可得出對于任意實數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;

④由拋物線的頂點坐標(biāo)可得出拋物線y=ax2+bx+c與直線y=n只有一個交點,將直線下移可得出拋物線y=ax2+bx+c與直線y=n-1有兩個交點,進而可得出關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根,結(jié)合④正確.【詳解】:①∵拋物線y=ax2+bx+c的頂點坐標(biāo)為(1,n),

∴-=1,

∴b=-2a,

∴4a+2b=0,結(jié)論①錯誤;

②∵拋物線y=ax2+bx+c與x軸交于點A(-1,0),

∴a-b+c=3a+c=0,

∴a=-.

又∵拋物線y=ax2+bx+c與y軸的交點在(0,2),(0,3)之間(包含端點),

∴2≤c≤3,

∴-1≤a≤-,結(jié)論②正確;

③∵a<0,頂點坐標(biāo)為(1,n),

∴n=a+b+c,且n≥ax2+bx+c,

∴對于任意實數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;

④∵拋物線y=ax2+bx+c的頂點坐標(biāo)為(1,n),

∴拋物線y=ax2+bx+c與直線y=n只有一個交點,

又∵a<0,

∴拋物線開口向下,

∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,

∴關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根,結(jié)合④正確.

故選C.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系、拋物線與x軸的交點以及二次函數(shù)的性質(zhì),觀察函數(shù)圖象,逐一分析四個結(jié)論的正誤是解題的關(guān)鍵.11、D【解析】

根據(jù)正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù),兩個負數(shù),絕對值大的反而小比較即可.【詳解】在﹣,,0,﹣1這四個數(shù)中,﹣1<﹣<0<,故最小的數(shù)為:﹣1.故選D.【點睛】本題考查了實數(shù)的大小比較,解答本題的關(guān)鍵是熟練掌握實數(shù)的大小比較方法,特別是兩個負數(shù)的大小比較.12、A【解析】

根據(jù)絕對值的性質(zhì)進行求解即可得.【詳解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正數(shù),故選A.【點睛】本題考查了絕對值的性質(zhì),熟練掌握絕對值的性質(zhì)是解題的關(guān)鍵.絕對值的性質(zhì):一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);1的絕對值是1.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

設(shè)AC=x,則AB=2x,根據(jù)面積公式得S△ABC=2x,由余弦定理求得cosC代入化簡S△ABC=,由三角形三邊關(guān)系求得,由二次函數(shù)的性質(zhì)求得S△ABC取得最大值.【詳解】設(shè)AC=x,則AB=2x,根據(jù)面積公式得:c==2x.由余弦定理可得:,∴S△ABC=2x=2x=由三角形三邊關(guān)系有,解得,故當(dāng)時,取得最大值,

故答案為:.【點睛】本題主要考查了余弦定理和面積公式在解三角形中的應(yīng)用,考查了二次函數(shù)的性質(zhì),考查了計算能力,當(dāng)涉及最值問題時,可考慮用函數(shù)的單調(diào)性和定義域等問題,屬于中檔題.14、﹣1【解析】

∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四邊形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案為﹣1.15、°【解析】

通過旋轉(zhuǎn),把PA、PB、PC或關(guān)聯(lián)的線段集中到同一個三角形,再根據(jù)兩邊的平方和等于第三邊求證直角三角形,可以求解∠APB.【詳解】把△PAB繞B點順時針旋轉(zhuǎn)90°,得△P′BC,則△PAB≌△P′BC,設(shè)PA=x,PB=2x,PC=3x,連PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案為135°.【點睛】本題考查的是正方形四邊相等的性質(zhì),考查直角三角形中勾股定理的運用,把△PAB順時針旋轉(zhuǎn)90°使得A′與C點重合是解題的關(guān)鍵.16、4.8或【解析】

根據(jù)題意可分兩種情況,①當(dāng)CP和CB是對應(yīng)邊時,△CPQ∽△CBA與②CP和CA是對應(yīng)邊時,△CPQ∽△CAB,根據(jù)相似三角形的性質(zhì)分別求出時間t即可.【詳解】①CP和CB是對應(yīng)邊時,△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是對應(yīng)邊時,△CPQ∽△CAB,所以=,即=,解得t=.綜上所述,當(dāng)t=4.8或時,△CPQ與△CBA相似.【點睛】此題主要考查相似三角形的性質(zhì),解題的關(guān)鍵是分情況討論.17、3【解析】

作BE⊥AC于E,根據(jù)正弦的定義求出BE,再根據(jù)正弦的定義計算即可.【詳解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB?sin∠BAC=,由題意得,∠C=45°,∴BC==(千米),故答案為3.【點睛】本題考查的是解直角三角形的應(yīng)用-方向角問題,掌握方向角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.18、12【解析】

在同樣條件下,大量反復(fù)試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,根據(jù)紅球的個數(shù)除以總數(shù)等于頻率,求解即可.【詳解】∵摸到紅球的頻率穩(wěn)定在0.25,

∴解得:a=12故答案為:12【點睛】此題主要考查了利用頻率估計概率,解答此題的關(guān)鍵是利用紅球的個數(shù)除以總數(shù)等于頻率.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、①③④.【解析】試題分析:∵x=﹣1時y=﹣1,x=1時,y=3,x=1時,y=5,∴,解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正確;對稱軸為直線,所以,當(dāng)x>時,y的值隨x值的增大而減小,故②錯誤;方程為﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=1的一個根,正確,故③正確;﹣1<x<3時,ax2+(b﹣1)x+c>1正確,故④正確;綜上所述,結(jié)論正確的是①③④.故答案為①③④.【考點】二次函數(shù)的性質(zhì).20、(1)答案見解析;(2).【解析】【分析】(1)根據(jù)參與獎有10人,占比25%可求得獲獎的總?cè)藬?shù),用總?cè)藬?shù)減去二等獎、三等獎、鼓勵獎、參與獎的人數(shù)可求得一等獎的人數(shù),據(jù)此補全條形圖即可;(2)根據(jù)題意分別求出七年級、八年級、九年級獲得一等獎的人數(shù),然后通過列表或畫樹狀圖法進行求解即可得.【詳解】(1)10÷25%=40(人),獲一等獎人數(shù):40-8-6-12-10=4(人),補全條形圖如圖所示:(2)七年級獲一等獎人數(shù):4×=1(人),八年級獲一等獎人數(shù):4×=1(人),∴九年級獲一等獎人數(shù):4-1-1=2(人),七年級獲一等獎的同學(xué)用M表示,八年級獲一等獎的同學(xué)用N表示,九年級獲一等獎的同學(xué)用P1、P2表示,樹狀圖如下:共有12種等可能結(jié)果,其中獲得一等獎的既有七年級又有九年級人數(shù)的結(jié)果有4種,則所選出的兩人中既有七年級又有九年級同學(xué)的概率P=.【點評】此題考查了統(tǒng)計與概率綜合,理解扇形統(tǒng)計圖與條形統(tǒng)計圖的意義及列表法或樹狀圖法是解題關(guān)鍵.21、(1)證明見解析;(2)證明見解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設(shè)AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設(shè)OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據(jù)此得出關(guān)于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵四邊形ABDC是圓的內(nèi)接四邊形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四邊形AEFG是⊙C的內(nèi)接四邊形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF?BG=BE?AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB?AC,即BC2﹣AC2=AB?AC;(1)設(shè)AB=5k、AC=1k,∵BC2﹣AC2=AB?AC,∴BC=2k,連接ED交BC于點M,∵四邊形BDCE是菱形,∴DE垂直平分BC,則點E、O、M、D共線,在Rt△DMC中,DC=AC=1k,MC=BC=k,∴DM=,∴OM=OD﹣DM=1﹣k,在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,解得:k=或k=0(舍),∴BC=2k=4;②設(shè)OM=d,則MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,由(2)得AB?AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴當(dāng)d=,即OM=時,AB?AC最大,最大值為,∴DC2=,∴AC=DC=,∴AB=,此時.點睛:本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握圓的有關(guān)性質(zhì)、圓內(nèi)接四邊形的性質(zhì)及菱形的性質(zhì)、相似三角形的判定與性質(zhì)、二次函數(shù)的性質(zhì)等知識點.22、(1)△AFE.EF=BE+DF.(2)BF=DF-BE,理由見解析;(3)【解析】試題分析:(1)先根據(jù)旋轉(zhuǎn)得:計算即點共線,再根據(jù)SAS證明△AFE≌△AFG,得EF=FG,可得結(jié)論EF=DF+DG=DF+AE;

(2)如圖2,同理作輔助線:把△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,證明△EAF≌△GAF,得EF=FG,所以EF=DF?DG=DF?BE;

(3)如圖3,同理作輔助線:把△ABD繞點A逆時針旋轉(zhuǎn)至△ACG,證明△AED≌△AEG,得,先由勾股定理求的長,從而得結(jié)論.試題解析:(1)思路梳理:如圖1,把△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,可使AB與AD重合,即AB=AD,由旋轉(zhuǎn)得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,∴∠FDG=∠ADF+∠ADG=+=,即點F.D.

G共線,∵四邊形ABCD為矩形,∴∠BAD=,∵∠EAF=,∴∴∴在△AFE和△AFG中,∵∴△AFE≌△AFG(SAS),∴EF=FG,∴EF=DF+DG=DF+AE;故答案為:△AFE,EF=DF+AE;(2)類比引申:如圖2,EF=DF?BE,理由是:把△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,可使AB與AD重合,則G在DC上,由旋轉(zhuǎn)得:BE=DG,∠DAG=∠BAE,AE=AG,∵∠BAD=,∴∠BAE+∠BAG=,∵∠EAF=,∴∠FAG=?=,∴∠EAF=∠FAG=,在△EAF和△GAF中,∵∴△EAF≌△GAF(SAS),∴EF=FG,∴EF=DF?DG=DF?BE;(3)聯(lián)想拓展:如圖3,把△ABD繞點A逆時針旋轉(zhuǎn)至△ACG,可使AB與AC重合,連接EG,由旋轉(zhuǎn)得:AD=AG,∠BAD=∠CAG,BD=CG,∵∠BAC=,AB=AC,∴∠B=∠ACB=,∴∠ACG=∠B=,∴∠BCG=∠ACB+∠ACG=+=,∵EC=2,CG=BD=1,由勾股定理得:∵∠BAD=∠CAG,∠BAC=,∴∠DAG=,∵∠BAD+∠EAC=,∴∠CAG+∠EAC==∠EAG,∴∠DAE=,∴∠DAE=∠EAG=,∵AE=AE,∴△AED≌△AEG,∴23、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當(dāng)點E運動到(1,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點A、C的坐標(biāo)分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據(jù)二次函數(shù)的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P1,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質(zhì)及勾股定理就可以求出結(jié)論;(3)由二次函數(shù)的解析式可求出B點的坐標(biāo),從而可求出BC的解析式,從而可設(shè)設(shè)E點的坐標(biāo),進而可表示出F的坐標(biāo),由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.試題解析:(1)∵拋物線y=﹣x1+mx+n經(jīng)過A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對稱軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x軸于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)當(dāng)y=0時,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).設(shè)直線BC的解析式為y=kx+b,由圖象,得,解得:,∴直線BC的解析式為:y=﹣x+1.如圖1,過點C作CM⊥EF于M,設(shè)E(a,﹣a+1),F(xiàn)(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1時,S四邊形CDBF的面積最大=,∴E(1,1).考點:1、勾股定理;1、等腰三角形的性質(zhì);3、四邊形的面積;2、二次函數(shù)的最值24、(1)證明見解析;(2)證明見解析;(3)∠EAF=m°.【解析】分析:(1)如圖1中,欲證明BD=EC,只要證明△DAB≌△EAC即可;(2)如圖2中,延長DC到E,使得DB=DE.首先證明△BDE是等邊三角形,再證明△ABD≌△CBE即可解決問題;(3)如圖3中,將AE繞點E逆時針旋轉(zhuǎn)m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.想辦法證明△AFE≌△AFG,可得∠EAF=∠FAG=m°.詳(1)證明:如圖1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC,∴BD=EC.(2)證明:如圖2中,延長DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等邊三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論