北京市2024屆中考數(shù)學(xué)模擬試題含解析_第1頁
北京市2024屆中考數(shù)學(xué)模擬試題含解析_第2頁
北京市2024屆中考數(shù)學(xué)模擬試題含解析_第3頁
北京市2024屆中考數(shù)學(xué)模擬試題含解析_第4頁
北京市2024屆中考數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北京市2024屆中考數(shù)學(xué)模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,PA和PB是⊙O的切線,點A和B是切點,AC是⊙O的直徑,已知∠P=40°,則∠ACB的大小是()A.60° B.65° C.70° D.75°2.有一種球狀細(xì)菌的直徑用科學(xué)記數(shù)法表示為2.16×10﹣3米,則這個直徑是()A.216000米 B.0.00216米C.0.000216米 D.0.0000216米3.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.4.下列計算正確的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a(chǎn)2p÷a﹣p=a3p5.下列運算正確的是()A.﹣3a+a=﹣4a B.3x2?2x=6x2C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x46.如圖,⊙O的半徑OC與弦AB交于點D,連結(jié)OA,AC,CB,BO,則下列條件中,無法判斷四邊形OACB為菱形的是()A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB與OC互相垂直 D.AB與OC互相平分7.已知一元二次方程ax2+ax﹣4=0有一個根是﹣2,則a值是()A.﹣2 B. C.2 D.48.下列各類數(shù)中,與數(shù)軸上的點存在一一對應(yīng)關(guān)系的是()A.有理數(shù)B.實數(shù)C.分?jǐn)?shù)D.整數(shù)9.如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個結(jié)論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個10.平面直角坐標(biāo)系中,若點A(a,﹣b)在第三象限內(nèi),則點B(b,a)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題(共7小題,每小題3分,滿分21分)11.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點O,連接OC,若BC=3,AC=4,則tan∠OCB=_____12.在△ABC中,點D在邊BC上,且BD:DC=1:2,如果設(shè)=,=,那么等于__(結(jié)果用、的線性組合表示).13.如圖,正△ABC的邊長為2,頂點B、C在半徑為的圓上,頂點A在圓內(nèi),將正△ABC繞點B逆時針旋轉(zhuǎn),當(dāng)點A第一次落在圓上時,則點C運動的路線長為(結(jié)果保留π);若A點落在圓上記做第1次旋轉(zhuǎn),將△ABC繞點A逆時針旋轉(zhuǎn),當(dāng)點C第一次落在圓上記做第2次旋轉(zhuǎn),再繞C將△ABC逆時針旋轉(zhuǎn),當(dāng)點B第一次落在圓上,記做第3次旋轉(zhuǎn)……,若此旋轉(zhuǎn)下去,當(dāng)△ABC完成第2017次旋轉(zhuǎn)時,BC邊共回到原來位置次.14.?dāng)?shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補”原理復(fù)原了《海島算經(jīng)》九題古證.(以上材料來源于《古證復(fù)原的原則》《吳文俊與中國數(shù)學(xué)》和《古代世界數(shù)學(xué)泰斗劉徽》)請根據(jù)上圖完成這個推論的證明過程.證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.15.比較大?。篲____.(填“<“,“=“,“>“)16.函數(shù)中自變量x的取值范圍是_____;函數(shù)中自變量x的取值范圍是______.17.甲、乙兩點在邊長為100m的正方形ABCD上按順時針方向運動,甲的速度為5m/秒,乙的速度為10m/秒,甲從A點出發(fā),乙從CD邊的中點出發(fā),則經(jīng)過__秒,甲乙兩點第一次在同一邊上.三、解答題(共7小題,滿分69分)18.(10分)拋物線y=﹣x2+bx+c(b,c均是常數(shù))經(jīng)過點O(0,0),A(4,4),與x軸的另一交點為點B,且拋物線對稱軸與線段OA交于點P.(1)求該拋物線的解析式和頂點坐標(biāo);(2)過點P作x軸的平行線l,若點Q是直線上的動點,連接QB.①若點O關(guān)于直線QB的對稱點為點C,當(dāng)點C恰好在直線l上時,求點Q的坐標(biāo);②若點O關(guān)于直線QB的對稱點為點D,當(dāng)線段AD的長最短時,求點Q的坐標(biāo)(直接寫出答案即可).19.(5分)如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2ax與x軸相交于O、A兩點,OA=4,點D為拋物線的頂點,并且直線y=kx+b與該拋物線相交于A、B兩點,與y軸相交于點C,B點的橫坐標(biāo)是﹣1.(1)求k,a,b的值;(2)若P是直線AB上方拋物線上的一點,設(shè)P點的橫坐標(biāo)是t,△PAB的面積是S,求S關(guān)于t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;(3)在(2)的條件下,當(dāng)PB∥CD時,點Q是直線AB上一點,若∠BPQ+∠CBO=180°,求Q點坐標(biāo).20.(8分)對幾何命題進(jìn)行逆向思考是幾何研究中的重要策略,我們知道,等腰三角形兩腰上的高線相等,那么等腰三角形兩腰上的中線,兩底角的角平分線也分別相等嗎?它們的逆命題會正確嗎?(1)請判斷下列命題的真假,并在相應(yīng)命題后面的括號內(nèi)填上“真”或“假”.①等腰三角形兩腰上的中線相等;②等腰三角形兩底角的角平分線相等;③有兩條角平分線相等的三角形是等腰三角形;(2)請寫出“等腰三角形兩腰上的中線相等”的逆命題,如果逆命題為真,請畫出圖形,寫出已知、求證并進(jìn)行證明,如果不是,請舉出反例.21.(10分)如圖,AB是⊙O的直徑,C、D為⊙O上兩點,且,過點O作OE⊥AC于點E⊙O的切線AF交OE的延長線于點F,弦AC、BD的延長線交于點G.(1)求證:∠F=∠B;(2)若AB=12,BG=10,求AF的長.22.(10分)計算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷223.(12分)如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.求此拋物線的解析式;求C、D兩點坐標(biāo)及△BCD的面積;若點P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點P的坐標(biāo).24.(14分)某市旅游部門統(tǒng)計了今年“五?一”放假期間該市A、B、C、D四個旅游景區(qū)的旅游人數(shù),并繪制出如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,根據(jù)圖中的信息解答下列問題:(1)求今年“五?一”放假期間該市這四個景點共接待游客的總?cè)藬?shù);(2)扇形統(tǒng)計圖中景點A所對應(yīng)的圓心角的度數(shù)是多少,請直接補全條形統(tǒng)計圖;(3)根據(jù)預(yù)測,明年“五?一”放假期間將有90萬游客選擇到該市的這四個景點旅游,請你估計有多少人會選擇去景點D旅游?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:連接OB,根據(jù)PA、PB為切線可得:∠OAP=∠OBP=90°,根據(jù)四邊形AOBP的內(nèi)角和定理可得∠AOB=140°,∵OC=OB,則∠C=∠OBC,根據(jù)∠AOB為△OBC的外角可得:∠ACB=140°÷2=70°.考點:切線的性質(zhì)、三角形外角的性質(zhì)、圓的基本性質(zhì).2、B【解析】

絕對值小于1的負(fù)數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】2.16×10﹣3米=0.00216米.故選B.【點睛】考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.3、B【解析】

如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長,HE的長,AE的長,

NE的長,EF的長,則可求sin∠AFG的值.【詳解】解:如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.

∵四邊形ABCD是菱形,AB=4,∠DAB=60°,

∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB

∴∠HDE=∠DAB=60°,

∵點E是CD中點

∴DE=CD=1

在Rt△DEH中,DE=1,∠HDE=60°

∴DH=1,HE=

∴AH=AD+DH=5

在Rt△AHE中,AE==1

∴AN=NE=,AE⊥GF,AF=EF

∵CD=BC,∠DCB=60°

∴△BCD是等邊三角形,且E是CD中點

∴BE⊥CD,

∵BC=4,EC=1

∴BE=1

∵CD∥AB

∴∠ABE=∠BEC=90°

在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.

∴EF=由折疊性質(zhì)可得∠AFG=∠EFG,

∴sin∠EFG=sin∠AFG=,故選B.【點睛】本題考查了折疊問題,菱形的性質(zhì),勾股定理,添加恰當(dāng)?shù)妮o助線構(gòu)造直角三角形,利用勾股定理求線段長度是本題的關(guān)鍵.4、D【解析】

直接利用合并同類項法則以及完全平方公式和整式的乘除運算法則分別計算即可得出答案.【詳解】解:A.﹣5x﹣2x=﹣7x,故此選項錯誤;B.(a+3)2=a2+6a+9,故此選項錯誤;C.(﹣a3)2=a6,故此選項錯誤;D.a(chǎn)2p÷a﹣p=a3p,正確.故選D.【點睛】本題主要考查了合并同類項以及完全平方公式和整式的乘除運算,正確掌握運算法則是解題的關(guān)鍵.5、D【解析】

根據(jù)合并同類項、單項式的乘法、積的乘方和單項式的乘法逐項計算,結(jié)合排除法即可得出答案.【詳解】A.﹣3a+a=﹣2a,故不正確;B.3x2?2x=6x3,故不正確;C.4a2﹣5a2=-a2,故不正確;D.(2x3)2÷2x2=4x6÷2x2=2x4,故正確;故選D.【點睛】本題考查了合并同類項、單項式的乘法、積的乘方和單項式的乘法,熟練掌握它們的運算法則是解答本題的關(guān)鍵.6、C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等邊三角形,∴OA=AC=OC=BC=OB,∴四邊形OACB是菱形;即A選項中的條件可以判定四邊形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即B選項中的條件可以判定四邊形OACB是菱形;(3)由OC和AB互相垂直不能證明到四邊形OACB是菱形,即C選項中的條件不能判定四邊形OACB是菱形;(4)∵AB與OC互相平分,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即由D選項中的條件能夠判定四邊形OACB是菱形.故選C.7、C【解析】分析:將x=-2代入方程即可求出a的值.詳解:將x=-2代入可得:4a-2a-4=0,解得:a=2,故選C.點睛:本題主要考查的是解一元一次方程,屬于基礎(chǔ)題型.解方程的一般方法的掌握是解題的關(guān)鍵.8、B【解析】

根據(jù)實數(shù)與數(shù)軸上的點存在一一對應(yīng)關(guān)系解答.【詳解】實數(shù)與數(shù)軸上的點存在一一對應(yīng)關(guān)系,故選:B.【點睛】本題考查了實數(shù)與數(shù)軸上點的關(guān)系,每一個實數(shù)都可以用數(shù)軸上唯一的點來表示,反過來,數(shù)軸上的每個點都表示一個唯一的實數(shù),也就是說實數(shù)與數(shù)軸上的點一一對應(yīng).9、C【解析】

根據(jù)圖像可得:a<0,b<0,c=0,即abc=0,則①正確;當(dāng)x=1時,y<0,即a+b+c<0,則②錯誤;根據(jù)對稱軸可得:-b2a=-3根據(jù)函數(shù)與x軸有兩個交點可得:b2故選C.【點睛】本題考查二次函數(shù)的性質(zhì).能通過圖象分析a,b,c的正負(fù),以及通過一些特殊點的位置得出a,b,c之間的關(guān)系是解題關(guān)鍵.10、D【解析】分析:根據(jù)題意得出a和b的正負(fù)性,從而得出點B所在的象限.詳解:∵點A在第三象限,∴a<0,-b<0,即a<0,b>0,∴點B在第四象限,故選D.點睛:本題主要考查的是象限中點的坐標(biāo)特點,屬于基礎(chǔ)題型.明確各象限中點的橫縱坐標(biāo)的正負(fù)性是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【點睛】本題考查菱形的性質(zhì)、勾股定理、直角三角形斜邊中線的性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.12、【解析】

根據(jù)三角形法則求出即可解決問題;【詳解】如圖,∵=,=,∴=+=-,∵BD=BC,∴=.故答案為.【點睛】本題考查平面向量,解題的關(guān)鍵是熟練掌握三角形法則,屬于中考??碱}型.13、,1.【解析】

首先連接OA′、OB、OC,再求出∠C′BC的大小,進(jìn)而利用弧長公式問題即可解決.因為△ABC是三邊在正方形CBA′C″上,BC邊每12次回到原來位置,2017÷12=1.08,推出當(dāng)△ABC完成第2017次旋轉(zhuǎn)時,BC邊共回到原來位置1次.【詳解】如圖,連接OA′、OB、OC.∵OB=OC=,BC=2,∴△OBC是等腰直角三角形,∴∠OBC=45°;同理可證:∠OBA′=45°,∴∠A′BC=90°;∵∠ABC=60°,∴∠A′BA=90°-60°=30°,∴∠C′BC=∠A′BA=30°,∴當(dāng)點A第一次落在圓上時,則點C運動的路線長為:.∵△ABC是三邊在正方形CBA′C″上,BC邊每12次回到原來位置,2017÷12=1.08,∴當(dāng)△ABC完成第2017次旋轉(zhuǎn)時,BC邊共回到原來位置1次,故答案為:,1.【點睛】本題考查軌跡、等邊三角形的性質(zhì)、旋轉(zhuǎn)變換、規(guī)律問題等知識,解題的關(guān)鍵是循環(huán)利用數(shù)形結(jié)合的思想解決問題,循環(huán)從特殊到一般的探究方法,所以中考填空題中的壓軸題.14、S△AEFS△FMCS△ANFS△AEFS△FGCS△FMC【解析】

根據(jù)矩形的性質(zhì):矩形的對角線把矩形分成面積相等的兩部分,由此即可證明結(jié)論.【詳解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分別為S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【點睛】本題考查矩形的性質(zhì),解題的關(guān)鍵是靈活運用矩形的對角線把矩形分成面積相等的兩部分這個性質(zhì),屬于中考??碱}型.15、<【解析】

先比較它們的平方,進(jìn)而可比較與的大小.【詳解】()2=80,()2=100,∵80<100,∴<.故答案為:<.【點睛】本題考查了實數(shù)的大小比較,帶二次根號的實數(shù),在比較它們的大小時,通常先比較它們的平方的大小.16、x≠2x≥3【解析】

根據(jù)分式的意義和二次根式的意義,分別求解.【詳解】解:根據(jù)分式的意義得2-x≠0,解得x≠2;根據(jù)二次根式的意義得2x-6≥0,解得x≥3.故答案為:x≠2,x≥3.【點睛】數(shù)自變量的范圍一般從幾個方面考慮:(1)當(dāng)函數(shù)表達(dá)式是整式時,自變量可取全體實數(shù);(2)當(dāng)函數(shù)表達(dá)式是分式時,考慮分式的分母不能為0;(3)當(dāng)函數(shù)表達(dá)式是二次根式時,被開方數(shù)為非負(fù)數(shù).17、1【解析】試題分析:設(shè)x秒時,甲乙兩點相遇.根據(jù)題意得:10x-5x=250,解得:x=50,相遇時甲走了250m,乙走了500米,則根據(jù)題意推得第一次在同一邊上時可以為1.三、解答題(共7小題,滿分69分)18、(1)y=﹣(x﹣)2+;(,);(2)①(﹣,)或(,);②(0,);【解析】

1)把0(0,0),A(4,4v3)的坐標(biāo)代入y=﹣x2+bx+c,轉(zhuǎn)化為解方程組即可.(2)先求出直線OA的解析式,點B坐標(biāo),拋物線的對稱軸即可解決問題.(3)①如圖1中,點O關(guān)于直線BQ的對稱點為點C,當(dāng)點C恰好在直線l上時,首先證明四邊形BOQC是菱形,設(shè)Q(m,),根據(jù)OQ=OB=5,可得方程,解方程即可解決問題.②如圖2中,由題意點D在以B為圓心5為半徑的OB上運動,當(dāng)A,D、B共線時,線段AD最小,設(shè)OD與BQ交于點H.先求出D、H兩點坐標(biāo),再求出直線BH的解析式即可解決問題.【詳解】(1)把O(0,0),A(4,4)的坐標(biāo)代入y=﹣x2+bx+c,得,解得,∴拋物線的解析式為y=﹣x2+5x=﹣(x﹣)2+.所以拋物線的頂點坐標(biāo)為(,);(2)①由題意B(5,0),A(4,4),∴直線OA的解析式為y=x,AB==7,∵拋物線的對稱軸x=,∴P(,).如圖1中,點O關(guān)于直線BQ的對稱點為點C,當(dāng)點C恰好在直線l上時,∵QC∥OB,∴∠CQB=∠QBO=∠QBC,∴CQ=BC=OB=5,∴四邊形BOQC是平行四邊形,∵BO=BC,∴四邊形BOQC是菱形,設(shè)Q(m,),∴OQ=OB=5,∴m2+()2=52,∴m=±,∴點Q坐標(biāo)為(﹣,)或(,);②如圖2中,由題意點D在以B為圓心5為半徑的⊙B上運動,當(dāng)A、D、B共線時,線段AD最小,設(shè)OD與BQ交于點H.∵AB=7,BD=5,∴AD=2,D(,),∵OH=HD,∴H(,),∴直線BH的解析式為y=﹣x+,當(dāng)y=時,x=0,∴Q(0,).【點睛】本題二次函數(shù)與一次函數(shù)的關(guān)系、幾何動態(tài)問題、最值問題、作輔助圓解決問題,難度較大,需積極思考,靈活應(yīng)對.19、(1)k=1、a=2、b=4;(2)s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;(3)Q(﹣,)【解析】

(1)根據(jù)題意可得A(-4,0)代入拋物線解析式可得a,求出拋物線解析式,根據(jù)B的橫坐標(biāo)可求B點坐標(biāo),把A,B坐標(biāo)代入直線解析式,可求k,b(2)過P點作PN⊥OA于N,交AB于M,過B點作BH⊥PN,設(shè)出P點坐標(biāo),可求出N點坐標(biāo),即可以用t表示S.(3)由PB∥CD,可求P點坐標(biāo),連接OP,交AC于點R,過P點作PN⊥OA于M,交AB于N,過D點作DT⊥OA于T,根據(jù)P的坐標(biāo),可得∠POA=45°,由OA=OC可得∠CAO=45°則PO⊥AB,根據(jù)拋物線的對稱性可知R在對稱軸上.設(shè)Q點坐標(biāo),根據(jù)△BOR∽△PQS,可求Q點坐標(biāo).【詳解】(1)∵OA=4∴A(﹣4,0)∴﹣16+8a=0∴a=2,∴y=﹣x2﹣4x,當(dāng)x=﹣1時,y=﹣1+4=3,∴B(﹣1,3),將A(﹣4,0)B(﹣1,3)代入函數(shù)解析式,得,解得,直線AB的解析式為y=x+4,∴k=1、a=2、b=4;(2)過P點作PN⊥OA于N,交AB于M,過B點作BH⊥PN,如圖1,由(1)知直線AB是y=x+4,拋物線是y=﹣x2﹣4x,∴當(dāng)x=t時,yP=﹣t2﹣4t,yN=t+4PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,化簡,得s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;∴﹣4<t<﹣1(3)y=﹣x2﹣4x,當(dāng)x=﹣2時,y=4即D(﹣2,4),當(dāng)x=0時,y=x+4=4,即C(0,4),∴CD∥OA∵B(﹣1,3).當(dāng)y=3時,x=﹣3,∴P(﹣3,3),連接OP,交AC于點R,過P點作PN⊥OA于M,交AB于N,過D點作DT⊥OA于T,如圖2,可證R在DT上∴PN=ON=3∴∠PON=∠OPN=45°∴∠BPR=∠PON=45°,∵OA=OC,∠AOC=90°∴∠PBR=∠BAO=45°,∴PO⊥AC∵∠BPQ+∠CBO=180,∴∠BPQ=∠BCO+∠BOC過點Q作QS⊥PN,垂足是S,∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,可求BR=,OR=2,設(shè)Q點的橫坐標(biāo)是m,當(dāng)x=m時y=m+4,∴SQ=m+3,PS=﹣m﹣1∴,解得m=﹣.當(dāng)x=﹣時,y=,Q(﹣,).【點睛】本題考查二次函數(shù)綜合題、一次函數(shù)的應(yīng)用、相似三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識,學(xué)會添加常用輔助線,構(gòu)造特殊四邊形解決問題.20、(1)①真;②真;③真;(2)逆命題是:有兩邊上的中線相等的三角形是等腰三角形;見解析.【解析】

(1)根據(jù)命題的真假判斷即可;(2)根據(jù)全等三角形的判定和性質(zhì)進(jìn)行證明即可.【詳解】(1)①等腰三角形兩腰上的中線相等是真命題;②等腰三角形兩底角的角平分線相等是真命題;③有兩條角平分線相等的三角形是等腰三角形是真命題;故答案為真;真;真;(2)逆命題是:有兩邊上的中線相等的三角形是等腰三角形;已知:如圖,△ABC中,BD,CE分別是AC,BC邊上的中線,且BD=CE,求證:△ABC是等腰三角形;證明:連接DE,過點D作DF∥EC,交BC的延長線于點F,∵BD,CE分別是AC,BC邊上的中線,∴DE是△ABC的中位線,∴DE∥BC,∵DF∥EC,∴四邊形DECF是平行四邊形,∴EC=DF,∵BD=CE,∴DF=BD,∴∠DBF=∠DFB,∵DF∥EC,∴∠F=∠ECB,∴∠ECB=∠DBC,在△DBC與△ECB中,∴△DBC≌△ECB,∴EB=DC,∴AB=AC,∴△ABC是等腰三角形.【點睛】本題考查了全等三角形的判定與性質(zhì)及等腰三角形的性質(zhì);證明的步驟是:先根據(jù)題意畫出圖形,再根據(jù)圖形寫出已知和求證,最后寫出證明過程.21、(1)見解析;(2).【解析】

(1)根據(jù)圓周角定理得到∠GAB=∠B,根據(jù)切線的性質(zhì)得到∠GAB+∠GAF=90°,證明∠F=∠GAB,等量代換即可證明;(2)連接OG,根據(jù)勾股定理求出OG,證明△FAO∽△BOG,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可.【詳解】(1)證明:∵,∴.∴∠GAB=∠B,∵AF是⊙O的切線,∴AF⊥AO.∴∠GAB+∠GAF=90°.∵OE⊥AC,∴∠F+∠GAF=90°.∴∠F=∠GAB,∴∠F=∠B;(2)解:連接OG.∵∠GAB=∠B,∴AG=BG.∵OA=OB=6,∴OG⊥AB.∴,∵∠FAO=∠BOG=90°,∠F=∠B,∴△FAO∽△BOG,∴.∴.【點睛】本題考查的是切線的性質(zhì)、相似三角形的判定和性質(zhì),掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.22、【解析】

按照實數(shù)的運算順序進(jìn)行運算即可.【詳解】解:原式【點睛】本題考查實數(shù)的運算,主

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論