版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年山東省威海市高三第二次模擬考試數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正項等比數(shù)列滿足,若存在兩項,,使得,則的最小值為().A.16 B. C.5 D.42.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.3.已知是虛數(shù)單位,若,則()A. B.2 C. D.104.已知向量,且,則m=()A.?8 B.?6C.6 D.85.已知集合,集合,則().A. B.C. D.6.若復(fù)數(shù)滿足,則()A. B. C. D.7.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域為()A. B. C. D.8.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)9.已知為虛數(shù)單位,若復(fù)數(shù),,則A. B.C. D.10.已知函數(shù),若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)11.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.12.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和為,且滿足,則______14.若雙曲線C:(,)的頂點到漸近線的距離為,則的最小值________.15.已知數(shù)列的前項和為,,,,則滿足的正整數(shù)的所有取值為__________.16.已知向量,且,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知傾斜角為的直線經(jīng)過拋物線的焦點,與拋物線相交于、兩點,且.(1)求拋物線的方程;(2)設(shè)為拋物線上任意一點(異于頂點),過做傾斜角互補的兩條直線、,交拋物線于另兩點、,記拋物線在點的切線的傾斜角為,直線的傾斜角為,求證:與互補.18.(12分)設(shè)函數(shù),其中.(Ⅰ)當(dāng)為偶函數(shù)時,求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個零點,求的取值范圍.19.(12分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個特征向量為α120.(12分)已知函數(shù).(1)若在上是減函數(shù),求實數(shù)的最大值;(2)若,求證:.21.(12分)某校為了解校園安全教育系列活動的成效,對全校學(xué)生進行一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應(yīng)等級進行量化:“合格”記分,“不合格”記分.現(xiàn)隨機抽取部分學(xué)生的成績,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如下所示:等級不合格合格得分頻數(shù)624(Ⅰ)若測試的同學(xué)中,分?jǐn)?shù)段內(nèi)女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認(rèn)為性別與安全意識有關(guān)?是否合格性別不合格合格總計男生女生總計(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中,共選取人進行座談,現(xiàn)再從這人中任選人,記所選人的量化總分為,求的分布列及數(shù)學(xué)期望;(Ⅲ)某評估機構(gòu)以指標(biāo)(,其中表示的方差)來評估該校安全教育活動的成效,若,則認(rèn)定教育活動是有效的;否則認(rèn)定教育活動無效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?附表及公式:,其中.22.(10分)已知a>0,證明:1.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設(shè)等比數(shù)列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當(dāng)且僅當(dāng)時,等號成立.故選:D.【點睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數(shù)列的知識,是一道中檔題.2、D【解析】
根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.3、C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)計算即可.【詳解】因為,所以,,故選:C【點睛】本題主要考查了復(fù)數(shù)模的定義及復(fù)數(shù)模的性質(zhì),屬于容易題.4、D【解析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標(biāo)運算,考查向量垂直的坐標(biāo)運算,屬于基礎(chǔ)題.5、A【解析】
算出集合A、B及,再求補集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點睛】本題考查集合的交集、補集運算,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.6、C【解析】
把已知等式變形,利用復(fù)數(shù)代數(shù)形式的除法運算化簡,再由復(fù)數(shù)模的計算公式求解.【詳解】解:由,得,∴.故選C.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法,是基礎(chǔ)題.7、B【解析】
利用換元法化簡解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因為(),所以,令(),則(),函數(shù)的對稱軸方程為,所以,,所以,所以的值域為.故選:B【點睛】本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識,考查學(xué)生分析問題,解決問題的能力,運算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類討論和應(yīng)用意識.8、C【解析】
由奇函數(shù)的性質(zhì)可得,進而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因為是定義在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點睛】本題考查了函數(shù)單調(diào)性和奇偶性的應(yīng)用,考查了一元二次不等式的解法,屬于中檔題.9、B【解析】
由可得,所以,故選B.10、C【解析】
利用導(dǎo)數(shù)求得在上遞增,結(jié)合與圖象,判斷出的大小關(guān)系,由此比較出的大小關(guān)系.【詳解】因為,所以在上單調(diào)遞增;在同一坐標(biāo)系中作與圖象,,可得,故.故選:C【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性比較大小,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.11、A【解析】
先利用最高點縱坐標(biāo)求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點法作圖求解.屬于中檔題.12、D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對題目所給等式進行賦值,由此求得的表達式,判斷出數(shù)列是等比數(shù)列,由此求得的值.【詳解】解:,可得時,,時,,又,兩式相減可得,即,上式對也成立,可得數(shù)列是首項為1,公比為的等比數(shù)列,可得.【點睛】本小題主要考查已知求,考查等比數(shù)列前項和公式,屬于中檔題.14、【解析】
根據(jù)雙曲線的方程求出其中一條漸近線,頂點,再利用點到直線的距離公式可得,由,利用基本不等式即可求解.【詳解】由雙曲線C:(,,可得一條漸近線,一個頂點,所以,解得,則,當(dāng)且僅當(dāng)時,取等號,所以的最小值為.故答案為:【點睛】本題考查了雙曲線的幾何性質(zhì)、點到直線的距離公式、基本不等式求最值,注意驗證等號成立的條件,屬于基礎(chǔ)題.15、20,21【解析】
由題意知數(shù)列奇數(shù)項和偶數(shù)項分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗即可.【詳解】解:由題意知數(shù)列的奇數(shù)項構(gòu)成公差為的等差數(shù)列,偶數(shù)項構(gòu)成公比為的等比數(shù)列,則;.當(dāng)時,,.當(dāng)時,,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點睛】本題考查等差數(shù)列與等比數(shù)列通項與求和公式,是綜合題,分清奇數(shù)項和偶數(shù)項是解題的關(guān)鍵.16、【解析】
由向量平行的坐標(biāo)表示得出,求解即可得出答案.【詳解】因為,所以,解得.故答案為:【點睛】本題主要考查了由向量共線或平行求參數(shù),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)根據(jù)題意,設(shè)直線方程為,聯(lián)立方程,根據(jù)拋物線的定義即可得到結(jié)論;(2)根據(jù)題意,設(shè)的方程為,聯(lián)立方程得,同理可得,進而得到,再利用點差法得直線的斜率,利用切線與導(dǎo)數(shù)的關(guān)系得直線的斜率,進而可得與互補.【詳解】(1)由題意設(shè)直線的方程為,令、,聯(lián)立,得,根據(jù)拋物線的定義得,又,故所求拋物線方程為.(2)依題意,設(shè),,設(shè)的方程為,與聯(lián)立消去得,,同理,直線的斜率=切線的斜率,由,即與互補.【點睛】本題考查直線與拋物線的位置關(guān)系的綜合應(yīng)用,直線斜率的應(yīng)用,考查分析問題解決問題的能力,屬于中檔題.18、(Ⅰ)極小值,極大值;(Ⅱ)或【解析】
(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)零點列表分析導(dǎo)函數(shù)符號變化規(guī)律,即得極值,(Ⅱ)先分離變量,轉(zhuǎn)化研究函數(shù),,利用導(dǎo)數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿足條件的的取值范圍.【詳解】(Ⅰ)由函數(shù)是偶函數(shù),得,即對于任意實數(shù)都成立,所以.此時,則.由,解得.當(dāng)x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.所以有極小值,有極大值.(Ⅱ)由,得.所以“在區(qū)間上有兩個零點”等價于“直線與曲線,有且只有兩個公共點”.對函數(shù)求導(dǎo),得.由,解得,.當(dāng)x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.又因為,,,,所以當(dāng)或時,直線與曲線,有且只有兩個公共點.即當(dāng)或時,函數(shù)在區(qū)間上有兩個零點.【點睛】利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.19、A=【解析】
運用矩陣定義列出方程組求解矩陣A【詳解】由特征值、特征向量定義可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩陣【點睛】本題考查了由矩陣特征值和特征向量求矩陣,只需運用定義得出方程組即可求出結(jié)果,較為簡單20、(1)(2)詳見解析【解析】
(1),在上,因為是減函數(shù),所以恒成立,即恒成立,只需.令,,則,因為,所以.所以在上是增函數(shù),所以,所以,解得.所以實數(shù)的最大值為.(2),.令,則,根據(jù)題意知,所以在上是增函數(shù).又因為,當(dāng)從正方向趨近于0時,趨近于,趨近于1,所以,所以存在,使,即,,所以對任意,,即,所以在上是減函數(shù);對任意,,即,所以在上是增函數(shù),所以當(dāng)時,取得最小值,最小值為.由于,,則,當(dāng)且僅當(dāng),即時取等號,所以當(dāng)時,.21、(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)不需要調(diào)整安全教育方案.【解析】
(I)根據(jù)題目所給數(shù)據(jù)填寫好列聯(lián)表,計算出的值,由此判斷出在犯錯誤概率不超過的前提下,不能認(rèn)為性別與安全測試是否合格有關(guān).(II)利用超幾何分布的計算公式,計算出的分布列并求得數(shù)學(xué)期望.(III)由(II)中數(shù)據(jù),計算出,進而求得的值,從而得出該校的安全教育活動是有效的,不需要調(diào)整安全教育方案.【詳解】解:(Ⅰ)由頻率分布直方圖可知,得分在的頻率為,故抽取的學(xué)生答卷總數(shù)為,.性別與合格情況的列聯(lián)表為:是否合格性別不合格合格小計男生女生小計即在犯錯誤概率不超過的前提下,不能認(rèn)為性別與安全測試是否合格有關(guān).(Ⅱ)“不合格”和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030丹麥化工設(shè)備供應(yīng)行業(yè)市場現(xiàn)狀供需格局及產(chǎn)業(yè)發(fā)展規(guī)劃分析報告
- 2025-2030中國土壤修復(fù)技術(shù)應(yīng)用現(xiàn)狀及環(huán)保政策導(dǎo)向研究報告
- 2025-2030東歐木材加工產(chǎn)業(yè)供需格局研究報告及生態(tài)投資規(guī)劃分析方案
- 2025-2030東南沿海網(wǎng)絡(luò)科技行業(yè)市場供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030東南歐浴室擱手設(shè)計人性化改進消費者滿意度調(diào)查與發(fā)展規(guī)劃
- 2025-2030不丹精油行業(yè)市場供需分析及投資評估規(guī)劃分析研究報告
- 2026年鄉(xiāng)鎮(zhèn)干部憲法考試題庫參考答案
- 2026年北京叉車教學(xué)考試題庫及一套答案
- 2026年八一叉車培訓(xùn)考試題庫及答案參考
- 2026湖南長沙市農(nóng)業(yè)農(nóng)村局公開招聘普通雇員備考題庫及答案詳解(新)
- 2024低溫低濁水給水處理設(shè)計標(biāo)準(zhǔn)
- 門窗知識文字培訓(xùn)課件
- 《房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)(2024版)》解讀
- 2025年國資委公務(wù)員面試熱點問題集錦及答案
- 計算機系大數(shù)據(jù)畢業(yè)論文
- DB50T 1839-2025 合川米粉生產(chǎn)技術(shù)規(guī)程
- 數(shù)值模擬實施方案(3篇)
- 2025年消防巡查員考試題庫
- (2025)版廉政知識測試題庫(含答案)
- JJF(蒙) 055-2023 熱變形、維卡軟化點溫度測定儀校準(zhǔn)規(guī)范
- 2023年FIDIC業(yè)主咨詢工程師標(biāo)準(zhǔn)服務(wù)協(xié)議書
評論
0/150
提交評論