重慶市八中2024年八年級下冊數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第1頁
重慶市八中2024年八年級下冊數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第2頁
重慶市八中2024年八年級下冊數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第3頁
重慶市八中2024年八年級下冊數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第4頁
重慶市八中2024年八年級下冊數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

重慶市八中2024年八年級下冊數(shù)學(xué)期末復(fù)習(xí)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,已知△ABC的周長為20cm,現(xiàn)將△ABC沿AB方向平移2cm至△A′B′C′的位置,連結(jié)CC′.則四邊形AB′C′C的周長是()A.18cm B.20cm C.22cm D.24cm2.如圖,△ABC繞點A順時針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC=,則圖中陰影部分的面積等于()A.2﹣ B.1 C. D.﹣l3.如圖,四邊形ABCD中,AC=a,BD=b,且AC⊥BD,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1,再順次連接四邊形A1B1C1D1各邊中點,得到四邊形A2B2C2D2,…,如此進行下去,得到四邊形AnBnCnDn.下列結(jié)論正確的有()①四邊形A2B2C2D2是矩形;②四邊形A4B4C4D4是菱形;③四邊形A5B5C5D5的周長是④四邊形AnBnCnDn的面積是A.①②③ B.②③④ C.①② D.②③4.正方形具有而菱形不一定具有的性質(zhì)是()A.對角線相等 B.對角線互相垂直C.對角線互相平分 D.對角線平分一組對角5.設(shè),,且,則的值是()A. B. C. D.6.甲、乙兩班舉行電腦漢字輸入比賽,參賽學(xué)生每分鐘輸入漢字個數(shù)的統(tǒng)計結(jié)果如下表:班級參加人數(shù)平均數(shù)中位數(shù)方差甲55135149191乙55135151110某同學(xué)分析上表后得出如下結(jié)論:①甲、乙兩班學(xué)生的平均成績相同;②乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù)(每分鐘輸入漢字≥150個為優(yōu)秀);③甲班成績的波動比乙班大.上述結(jié)論中,正確的是()A.①② B.②③ C.①③ D.①②③7.如圖,在矩形ABED中,AB=4,BE=EC=2,動點P從點E出發(fā)沿路徑ED→DA→AB以每秒1個單位長度的速度向終點B運動;設(shè)點P的運動時間為t秒,△PBC的面積為S,則下列能反映S與t的函數(shù)關(guān)系的圖象是()A. B.C. D.8.如圖,將個全等的陰影小正方形擺放得到邊長為的正方形,中間小正方形的各邊的中點恰好為另外個小正方形的一個頂點,小正方形的邊長為(、為正整數(shù)),則的值為()A. B. C. D.9.學(xué)校為創(chuàng)建“書香校園”購買了一批圖書.已知購買科普類圖書花費10000元,購買文學(xué)類圖書花費9000元,其中科普類圖書平均每本的價格比文學(xué)類圖書平均每本的價格貴5元,且購買科普書的數(shù)量比購買文學(xué)書的數(shù)量少100本.求科普類圖書平均每本的價格是多少元?若設(shè)科普類圖書平均每本的價格是x元,則可列方程為()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=10010.把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知,則球的半徑長是()A.2 B.2.5 C.3 D.411.如圖,等邊△ABC的邊長為6,點O是三邊垂直平分線的交點,∠FOG=120°,∠FOG的兩邊OF,OG分別交AB,BC與點D,E,∠FOG繞點O順時針旋轉(zhuǎn)時,下列四個結(jié)論正確的是()①OD=OE;②;③;④△BDE的周長最小值為9,A.1個 B.2個 C.3個 D.4個12.下列說法中正確的是()A.若,則 B.是實數(shù),且,則C.有意義時, D.0.1的平方根是二、填空題(每題4分,共24分)13.在菱形中,,若菱形的面積是,則=____________14.若直角三角形其中兩條邊的長分別為3,4,則該直角三角形斜邊上的高的長為________.15.已知是一元二次方程的兩實根,則代數(shù)式_______.16.一組數(shù)據(jù)共有50個,分成四組后其中前三組的頻率分別是0.25、0.15、0.3,則第四組數(shù)據(jù)的個數(shù)為______.17.直線y=3x﹣1向上平移4個單位得到的直線的解析式為:_____.18.實數(shù)在數(shù)軸上的對應(yīng)點的位置如圖所示,則__________.三、解答題(共78分)19.(8分)如圖所示,有一長方形的空地,長為米,寬為米,建筑商把它分成甲、乙、丙三部分,甲和乙為正方形.現(xiàn)計劃甲建筑成住宅區(qū),乙建成商場丙開辟成公園.請用含的代數(shù)式表示正方形乙的邊長;;若丙地的面積為平方米,請求出的值.20.(8分)某商店用1000元人民幣購進水果銷售,過了一段時間又用2800元購進這種水果,所購數(shù)量是第一次購進數(shù)量的2倍,但每千克的價格比第一次購進的貴了2元.(1)求該商店第一次購進水果多少千克?(2)該商店兩次購進的水果按照相同的標(biāo)價銷售一段時間后,將最后剩下的50千克按照標(biāo)價半價出售.售完全部水果后,利潤不低于3100元,則最初每千克水果的標(biāo)價是多少?21.(8分)解不等式組:,并把解集表示在數(shù)軸上.22.(10分)如圖,矩形OABC的頂點與坐標(biāo)原點O重合,將△OAB沿對角線OB所在的直線翻折,點A落在點D處,OD與BC相交于點E,已知OA=8,AB=4(1)求證:△OBE是等腰三角形;(2)求E點的坐標(biāo);(3)坐標(biāo)平面內(nèi)是否存在一點P,使得以B,D,E,P為頂點的四邊形是平行四邊形?若存在,請直接寫出P點坐標(biāo);若不存在,請說明理由.23.(10分)如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)畫出△ABC關(guān)于原點成中心對稱的三角形△A′B′C′;(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°,畫出圖形,直接寫出點B的對應(yīng)點B″的坐標(biāo);(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標(biāo).24.(10分)在中,對角線交于點,將過點的直線繞點旋轉(zhuǎn),交射線于點,于點,于點,連接.如圖當(dāng)點與點重合時,請直接寫出線段的數(shù)量關(guān)系;如圖,當(dāng)點在線段上時,與有什么數(shù)量關(guān)系?請說明你的結(jié)論;如圖,當(dāng)點在線段的延長線上時,與有什么數(shù)量關(guān)系?請說明你的結(jié)論.25.(12分)我們定義:如果兩個三角形的兩組對應(yīng)邊相等,且它們的夾角互補,我們就把其中一個三角形叫做另一個三角形的“夾補三角形”,同時把第三邊的中線叫做“夾補中線.例如:圖1中,△ABC與△ADE的對應(yīng)邊AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE邊的中線,則△ADE就是△ABC的“夾補三角形”,AF叫做△ABC的“夾補中線”.特例感知:(1)如圖2、圖3中,△ABC與△ADE是一對“夾補三角形”,AF是△ABC的“夾補中線”;①當(dāng)△ABC是一個等邊三角形時,AF與BC的數(shù)量關(guān)系是:;②如圖3當(dāng)△ABC是直角三角形時,∠BAC=90°,BC=a時,則AF的長是;猜想論證:(2)在圖1中,當(dāng)△ABC為任意三角形時,猜想AF與BC的關(guān)系,并給予證明.拓展應(yīng)用:(3)如圖4,在四邊形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△PAD是等邊三角形,求證:△PCD是△PBA的“夾補三角形”,并求出它們的“夾補中線”的長.26.一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),設(shè)客車離甲地的距離為y1千米,出租車離甲地的距離為y2千米,兩車行駛的時間為x小時,y1、y2關(guān)于x的函數(shù)圖像如下圖所示:(1)根據(jù)圖像,直接寫出y1、y2關(guān)于x的函數(shù)關(guān)系式;(2)若兩車之間的距離為S千米,請寫出S關(guān)于x的函數(shù)關(guān)系式;(3)甲、乙兩地間有A、B兩個加油站,相距200千米,若客車進入A加油站時,出租車恰好進入B加油站,求A加油站離甲地的距離.

參考答案一、選擇題(每題4分,共48分)1、D【解析】

根據(jù)平移的性質(zhì)求出平移前后的對應(yīng)線段和對應(yīng)點所連的線段的長度,即可求出四邊形的周長.【詳解】解:由題意,平移前后A、B、C的對應(yīng)點分別為A′、B′、C′,所以BC=B′C′,BB′=CC′,∴四邊形AB′C′C的周長=CA+AB+BB′+B′C′+C′C=△ABC的周長+2BB′=20+4=24(cm),故選D.【點睛】本題考查的是平移的性質(zhì),主要運用的知識點是:經(jīng)過平移,對應(yīng)點所連的線段平行且相等,對應(yīng)線段平行且相等.2、D【解析】∵△ABC繞點A順時針旋轉(zhuǎn)45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴圖中陰影部分的面積等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故選D.【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì)以及等腰直角三角形的性質(zhì)等知識,得出AD,AF,DC′的長是解題關(guān)鍵.3、C【解析】

首先根據(jù)題意,找出變化后的四邊形的邊長與四邊形ABCD中各邊長的長度關(guān)系規(guī)律,然后對以下選項作出分析與判斷:①根據(jù)矩形的判定與性質(zhì)作出判斷;②根據(jù)菱形的判定與性質(zhì)作出判斷;③由四邊形的周長公式:周長=邊長之和,來計算四邊形A5B5C5D5的周長;④根據(jù)四邊形AnBnCnDn的面積與四邊形ABCD的面積間的數(shù)量關(guān)系來求其面積.【詳解】①連接A1C1,B1D1.

∵在四邊形ABCD中,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1,

∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;

∴A1D1∥B1C1,A1B1∥C1D1,

∴四邊形A1B1C1D1是平行四邊形;

∵AC丄BD,∴四邊形A1B1C1D1是矩形,

∴B1D1=A1C1(矩形的兩條對角線相等);

∴A2D2=C2D2=C2B2=B2A2(中位線定理),

∴四邊形A2B2C2D2是菱形;

故①錯誤;

②由①知,四邊形A2B2C2D2是菱形;

∴根據(jù)中位線定理知,四邊形A4B4C4D4是菱形;

故②正確;

③根據(jù)中位線的性質(zhì)易知,A5B5=∴四邊形A5B5C5D5的周長是2×;故③正確;

④∵四邊形ABCD中,AC=a,BD=b,且AC丄BD,

∴S四邊形ABCD=ab÷2;

由三角形的中位線的性質(zhì)可以推知,每得到一次四邊形,它的面積變?yōu)樵瓉淼囊话耄?/p>

四邊形AnBnCnDn的面積是.故④正確;

綜上所述,②③④正確.

故選C.【點睛】考查了菱形的判定與性質(zhì)、矩形的判定與性質(zhì)及三角形的中位線定理(三角形的中位線平行于第三邊且等于第三邊的一半).解答此題時,需理清菱形、矩形與平行四邊形的關(guān)系.4、A【解析】試題分析:根據(jù)正方形、菱形的性質(zhì)依次分析各選項即可判斷.正方形具有而菱形不一定具有的性質(zhì)是對角線相等故選A.考點:正方形、菱形的性質(zhì)點評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握正方形、菱形的性質(zhì),即可完成.5、C【解析】

將變形后可分解為:(?5)(+3)=0,從而根據(jù)a>0,b>0可得出a和b的關(guān)系,代入即可得出答案.【詳解】由題意得:a+=3+15b,∴(?5)(+3)=0,故可得:=5,a=25b,∴=.故選C.【點睛】本題考查二次根式的化簡求值,有一定難度,根據(jù)題意得出a和b的關(guān)系是關(guān)鍵.6、D【解析】分析:根據(jù)平均數(shù)、中位數(shù)、方差的定義即可判斷;詳解:由表格可知,甲、乙兩班學(xué)生的成績平均成績相同;根據(jù)中位數(shù)可以確定,乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù);根據(jù)方差可知,甲班成績的波動比乙班大.故①②③正確,故選D.點睛:本題考查平均數(shù)、中位數(shù)、方差等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.7、D【解析】

分別求出點P在DE、AD、AB上運動時,S與t的函數(shù)關(guān)系式,繼而根據(jù)函數(shù)圖象的方向即可得出答案.【詳解】解:根據(jù)題意得:當(dāng)點P在ED上運動時,S=BC?PE=2t(0≤t≤4);當(dāng)點P在DA上運動時,此時S=8(4<t<6);當(dāng)點P在線段AB上運動時,S=BC(AB+AD+DE﹣t)=20﹣2t(6≤t≤10);結(jié)合選項所給的函數(shù)圖象,可得D選項符合題意.故選:D.【點睛】本題考查了動點問題的函數(shù)圖象,解答該類問題也可以不把函數(shù)圖象的解析式求出來,利用排除法進行解答.8、B【解析】

通過小正方形的邊長表示出大正方形的邊長,再利用a、b為正整數(shù)的條件分析求解.【詳解】解:由題意可知,∴∵a、b都是正整數(shù)∴=0,4a-2=2b∴a=4,b=7∴a+b=11故選:B.【點睛】本題考查了正方形的性質(zhì)以及有理數(shù)、無理數(shù)的性質(zhì),表示出大正方形的邊長利用有理數(shù)、無理數(shù)的性質(zhì)求出a、b是關(guān)鍵.9、B【解析】【分析】直接利用購買科普書的數(shù)量比購買文學(xué)書的數(shù)量少100本得出等式進而得出答案.【詳解】科普類圖書平均每本的價格是x元,則可列方程為:﹣=100,故選B.【點睛】本題考查了分式方程的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系列出方程是解題的關(guān)鍵.10、B【解析】

取EF的中點M,作MN⊥AD于點M,取MN上的球心O,連接OF,設(shè)OF=x,則OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的長即可.【詳解】如圖:EF的中點M,作MN⊥AD于點M,取MN上的球心O,連接OF,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴四邊形CDMN是矩形,∴MN=CD=4,設(shè)OF=x,則ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故選B.【點睛】本題主考查垂徑定理及勾股定理的知識,正確作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.11、B【解析】

連接OB、OC,如圖,利用等邊三角形的性質(zhì)得∠ABO=∠OBC=∠OCB=30°,再證明∠BOD=∠COE,于是可判斷△BOD≌△COE,所以BD=CE,OD=OE,則可對①進行判斷;利用S△BOD=S△COE得到四邊形ODBE的面積=S△ABC=,則可對③進行判斷;作OH⊥DE,如圖,則DH=EH,計算出S△ODE=OE2,利用S△ODE隨OE的變化而變化和四邊形ODBE的面積為定值可對②進行判斷;由于△BDE的周長=BC+DE=6+DE=OE,根據(jù)垂線段最短,當(dāng)OE⊥BC時,OE最小,△BDE的周長最小,計算出此時OE的長則可對④進行判斷.【詳解】解:連接OB、OC,如圖,

∵△ABC為等邊三角形,

∴∠ABC=∠ACB=60°,

∵點O是等邊△ABC的內(nèi)心,

∴OB=OC,OB、OC分別平分∠ABC和∠ACB,

∴∠ABO=∠OBC=∠OCB=30°,

∴∠BOC=120°,即∠BOE+∠COE=120°,

而∠DOE=120°,即∠BOE+∠BOD=120°,

∴∠BOD=∠COE,

在△BOD和△COE中,,∴△BOD≌△COE(ASA),

∴BD=CE,OD=OE,①正確;

∴S△BOD=S△COE,

∴四邊形ODBE的面積=S△OBC=S△ABC=××62=,③錯誤作OH⊥DE,如圖,則DH=EH,

∵∠DOE=120°,

∴∠ODE=∠OEH=30°,

∴OH=OE,HE=OH=OE,

∴DE=OE,

∴S△ODE=?OE?OE=OE2,

即S△ODE隨OE的變化而變化,

而四邊形ODBE的面積為定值,

∴S△ODE≠S△BDE;②錯誤;

∵BD=CE,

∴△BDE的周長=BD+BE+DE=CE+BE+DE=BC+DE=6+DE=6+OE,

當(dāng)OE⊥BC時,OE最小,△BDE的周長最小,此時OE=,

∴△BDE周長的最小值=6+3=9,④正確.

故選B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)以及三角形面積的計算等知識;熟練掌握旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì),證明三角形全等是解題的關(guān)鍵.12、C【解析】

根據(jù)算術(shù)平方根的意義,可知=|a|>0,故A不正確;根據(jù)一個數(shù)的平方為非負(fù)數(shù),可知a≥0,故不正確;根據(jù)二次根式的有意義的條件可知-x≥0,求得x≤0,故正確;根據(jù)一個數(shù)的平方等于a,那么這個數(shù)就是a的平方根,故不正確.故選C二、填空題(每題4分,共24分)13、【解析】

由菱形的性質(zhì)得AO=CO=6cm,BO=DO,AC⊥BD,由菱形的面積可求BD的長,由勾股定理可求AB的長.【詳解】解:如圖,∵四邊形ABCD是菱形∴AO=CO=6cm,BO=DO,AC⊥BD∵S菱形ABCD=×AC×BD=96∴BD=16cm∴BO=DO=8cm∴AB==10cm故答案為10cm【點睛】本題考查了菱形的性質(zhì),掌握菱形的面積公式是解決本題的關(guān)鍵.14、2.4或【解析】

分兩種情況:直角三角形的兩直角邊為3、4或直角三角形一條直角邊為3,斜邊為4,首先根據(jù)勾股定理即可求第三邊的長度,再根據(jù)三角形的面積即可解題.【詳解】若直角三角形的兩直角邊為3、4,則斜邊長為,設(shè)直角三角形斜邊上的高為h,,∴.若直角三角形一條直角邊為3,斜邊為4,則另一條直角邊為設(shè)直角三角形斜邊上的高為h,,∴.故答案為:2.4或.【點睛】本題考查了勾股定理和直角三角形的面積,熟練掌握勾股定理是解題的關(guān)鍵.15、【解析】

根據(jù)韋達定理得,再代入原式求解即可.【詳解】∵是一元二次方程的兩實根∴∴故答案為:.【點睛】本題考查了一元二次方程根與系數(shù)的問題,掌握韋達定理是解題的關(guān)鍵.16、2【解析】

先根據(jù)各小組的頻率和是2,求得第四組的頻率;再根據(jù)頻率=頻數(shù)÷數(shù)據(jù)總數(shù),進行計算即可得出第四組數(shù)據(jù)的個數(shù).【詳解】解:∵一組數(shù)據(jù)共有50個,分成四組后其中前三組的頻率分別是0.25、0.2、0.3,∴第四組的頻率為:2-0.25-0.2-0.3=0.3,∴第四組數(shù)據(jù)的個數(shù)為:50×0.3=2.故答案為2.【點睛】本題考查頻率與頻數(shù),用到的知識點:頻率=頻數(shù):數(shù)據(jù)總數(shù),各小組的頻率和是2.17、y=1x+1.【解析】

根據(jù)平移k不變,b值加減即可得出答案.【詳解】y=1x-1向上平移4個單位則:y=1x-1+4=1x+1,故答案為:y=1x+1.【點睛】本題考查圖形的平移變換和函數(shù)解析式之間的關(guān)系,平移后解析式有這樣一個規(guī)律“左加右減,上加下減”.18、【解析】

首先根據(jù)數(shù)軸的含義,得出,然后化簡所求式子,即可得解.【詳解】根據(jù)數(shù)軸,可得∴原式=故答案為.【點睛】此題主要考查絕對值的性質(zhì),熟練掌握,即可解題.三、解答題(共78分)19、(1)(x?12)米;(2)的值為20或1.【解析】

(1)由甲和乙為正方形,且該地長為x米,寬為12米,可得出丙的長,也是乙的邊長;(2)由(1)求得丙的長,再求出丙的寬,即可得出丙的面積,由此列出方程,求解即可.【詳解】解:(1)因為甲和乙為正方形,結(jié)合圖形可得丙的長為:(x?12)米.同樣乙的邊長也為(x?12)米,故答案為:(x?12)米;(2)結(jié)合(1)得,丙的長為:(x?12)米,丙的寬為12?(x?12)=(24?x)米,所以丙的面積為:(x?12)(24?x),列方程得,(x?12)(24?x)=32解方程得x1=20,x2=1.答:的值為20或1.【點睛】本題考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是表示出有關(guān)的線段的長,難度不大.20、(1)第一次購進水果200千克;(2)最初每千克水果標(biāo)價12元.【解析】

(1)設(shè)該商店第一次購進水果x千克,則第二次購進水果2x千克,然后根據(jù)每千克的價格比第一次購進的價格貴了2元,列出方程求解即可;

(2)設(shè)每千克水果的標(biāo)價是y元,然后根據(jù)兩次購進水果全部售完,利潤不低于3100元列出不等式,然后求解即可得出答案.【詳解】(1)設(shè)第一次購進水果千克,依題意可列方程:解得經(jīng)檢驗:是原方程的解.答:第一次購進水果200千克;(2)設(shè)最初水果標(biāo)價為元,依題意可列不等式:解得答:最初每千克水果標(biāo)價12元.【點睛】此題考查了分式方程的應(yīng)用,一元一次不等式的應(yīng)用,分析題意,找到合適的等量關(guān)系與不等關(guān)系是解決問題的關(guān)鍵.21、-2≤x<2【解析】

先求出不等式的解集,再求出不等式組的解集,最后在數(shù)軸上表示出來即可.【詳解】解:∵解不等式①得:x<2,解不等式②得:x≥-2,∴不等式組的解集為-2≤x<2,在數(shù)軸上表示為:【點睛】本題考查了解一元一次不等式組,在數(shù)軸上表示不等式組的解集等知識點,能求出不等式組的解集是解此題的關(guān)鍵.22、(1)見解析;(2)(3,4);(3)(,)或(,)或(,).【解析】

(1)由矩形的性質(zhì)得出OA∥BC,∠AOB=∠OBC,由折疊的性質(zhì)得∠AOB=∠DOB,得出∠OBC=∠DOB,證出OE=BE即可;

(2)設(shè)OE=BE=x,則CE=8-x,在Rt△OCE中,由勾股定理得出方程,解方程即可;

(3)先求出點D的坐標(biāo),然后根據(jù)B、D、E三點的坐標(biāo)利用中點坐標(biāo)公式分三種情況,即可求出P點的坐標(biāo).[點(a,b)與(c,d)所連線段的中點坐標(biāo)是(,)]【詳解】解:(1)證明:∵四邊形OABC是矩形,

∴OA∥BC,

∴∠AOB=∠OBC,

由折疊的性質(zhì)得:∠AOB=∠DOB,

∴∠OBC=∠DOB,

∴OE=BE,

∴△OBE是等腰三角形;

(2)設(shè)OE=BE=x,則CE=BC-BE=OA-BE=8-x,

在Rt△OCE中,由勾股定理得:42+(8-x)2=x2,

解得:x=5,

∴CE=8-x=3,

∵OC=4,

∴E點的坐標(biāo)為(3,4);

(3)坐標(biāo)平面內(nèi)存在一點P,使得以B,D,E,P為頂點的四邊形是平行四邊形.理由如下:作DH⊥BE于H在Rt△BDE中,BE=5,BD=4,DE=3∴∴DH=∴EH=∴CH=∴點D的坐標(biāo)是(,)∴當(dāng)BE為平行四邊形的對角線時,點P的坐標(biāo)為(3+8-,4+4-),即(,);

當(dāng)BD為平行四邊形的對角線時,點P的坐標(biāo)為(8+-3,4+-4),即(,);

當(dāng)DE為平行四邊形的對角線時,點P的坐標(biāo)為(3+-8,4+-4),即(,);

綜上所述,坐標(biāo)平面內(nèi)存在一點P,使得以B,D,E,P為頂點的四邊形是平行四邊形,P點坐標(biāo)為(,)或(,)或(,).【點睛】本題是四邊形綜合題目,考查了矩形的性質(zhì)、翻折變換的性質(zhì)、坐標(biāo)與圖形性質(zhì)、勾股定理、平行四邊形的性質(zhì)、中點坐標(biāo)公式等知識,本題綜合性強,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用分類討論的思想思考問題,屬于中考??碱}型.23、(1)圖略;(2)圖略,點B″的坐標(biāo)為(0,﹣6);(3)點D坐標(biāo)為(﹣7,3)或(3,3)或(﹣5,﹣3).【解析】

(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C關(guān)于原點對稱的點A′、B′、C′的位置,然后順次連接即可;

(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°的對應(yīng)點的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點B的對應(yīng)點的坐標(biāo);

(3)分AB、BC、AC是平行四邊形的對角線三種情況解答.【詳解】解:(1)如圖所示△A′B′C′即為所求;

(2)如圖所示,△A''B''(3)D(-7,3)或(-5,-3)或(3,3).

當(dāng)以BC為對角線時,點D3的坐標(biāo)為(-5,-3);

當(dāng)以AB為對角線時,點D2的坐標(biāo)為(-7,3);

當(dāng)以AC為對角線時,點D1坐標(biāo)為(3,3).【點睛】本題考查了利用旋轉(zhuǎn)變換作圖,平行四邊形的對邊相等,熟記性質(zhì)以及網(wǎng)格結(jié)構(gòu)準(zhǔn)確找出對應(yīng)點的位置是解題的關(guān)鍵.24、(1);(2),詳見解析;(3),詳見解析.【解析】

(1)利用平行四邊形的性質(zhì)通過“角角邊”證明△CFB≌△AGD,得到CF=AG,即可得證;(2)延長交于點,利用平行線的性質(zhì)通過“角角邊”證明△CFB≌△AGD,得到,再根據(jù)直角三角形中斜邊上的中線等于斜邊的一半即可證得;(3)延長,交于點,同(2)通過“角角邊”證明△CFB≌△AGD,得到,進而證得.【詳解】解:;∵四邊形ABCD為平行四邊形,∴AD=BC,AO=CO,∠DAG=∠BCF,∵,,∴∠BFC=∠DGA=90°,∴△CFB≌△AGD(AAS),∴CF=AG,∴;證明如圖,延長交于點,,,,,,,,,,;如圖,延長,交于點,四邊形是平行四邊形,,,,,,,,,,.【點睛】本題主要考查全等三角形的判定與性質(zhì),平行四邊形的性質(zhì),直角三角形斜邊上的中線等于斜邊的一半等,屬于綜合題,解此題的關(guān)鍵在于作適當(dāng)?shù)妮o助線構(gòu)造全等三角形.25、(1)AF=BC;a;(2)猜想:AF=BC,(3)【解析】

(1)①先判斷出AD=AE=AB=AC,∠DAE=120°,進而判斷出∠ADE=30°,再利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論;②先判斷出△ABC≌△ADE,利用直角三角形的性質(zhì)即可得出結(jié)論;(2)先判斷出△AEG≌△ACB,得出EG=BC,再判斷出DF=EF,即可得出結(jié)論;(3)先判斷出四邊形PHCD是矩形,進而判斷出∠DPC=30°,再判斷出PB=PC,進而求出∠APB=150°,即可利用“夾補三角形”即可得出結(jié)論.【詳解】解:(1)∵△ABC與△ADE是一對“夾補三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,①∵△ABC是等邊三角形,∴AB=AC=BC,∠BAC=60°∴AD=AE=AB=AC,∠DAE=120°,∴∠ADE=30°,∵AF是“夾補中線”,∴DF=EF,∴AF⊥DE,在Rt△ADF中,AF=AD=AB=BC,故答案

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論