版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年天津市和平區(qū)第一中學(xué)高考?jí)狠S卷數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).這5部專(zhuān)著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期.某中學(xué)擬從這5部專(zhuān)著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的概率為()A. B. C. D.2.在中,在邊上滿(mǎn)足,為的中點(diǎn),則().A. B. C. D.3.在區(qū)間上隨機(jī)取一個(gè)實(shí)數(shù),使直線(xiàn)與圓相交的概率為()A. B. C. D.4.在中,角所對(duì)的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.5.設(shè)是虛數(shù)單位,則()A. B. C. D.6.閱讀下側(cè)程序框圖,為使輸出的數(shù)據(jù)為31,則①處應(yīng)填的數(shù)字為A.4 B.5 C.6 D.77.已知函數(shù),若有2個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.8.已知數(shù)列是公比為的等比數(shù)列,且,,成等差數(shù)列,則公比的值為(
)A. B. C.或 D.或9.已知函數(shù)的定義域?yàn)椋?,?dāng)時(shí),.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.810.設(shè)函數(shù),若函數(shù)有三個(gè)零點(diǎn),則()A.12 B.11 C.6 D.311.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),延長(zhǎng)交橢圓于點(diǎn),若為等腰三角形,則橢圓的離心率A. B.C. D.12.已知隨機(jī)變量的分布列是則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)若關(guān)于的不等式的解集是,則的值為_(kāi)____.14.函數(shù)與的圖象上存在關(guān)于軸的對(duì)稱(chēng)點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)_____.15.已知雙曲線(xiàn)的漸近線(xiàn)與準(zhǔn)線(xiàn)的一個(gè)交點(diǎn)坐標(biāo)為,則雙曲線(xiàn)的焦距為_(kāi)_____.16.已知向量,且,則___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)如果對(duì)所有的≥0,都有≤,求的最小值;(Ⅲ)已知數(shù)列中,,且,若數(shù)列的前n項(xiàng)和為,求證:.18.(12分)設(shè)函數(shù),.(1)求函數(shù)的極值;(2)對(duì)任意,都有,求實(shí)數(shù)a的取值范圍.19.(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點(diǎn),是上異于,的點(diǎn),.(1)證明:平面平面;(2)若點(diǎn)為半圓弧上的一個(gè)三等分點(diǎn)(靠近點(diǎn))求二面角的余弦值.20.(12分)如圖,在四棱錐中,底面是菱形,∠,是邊長(zhǎng)為2的正三角形,,為線(xiàn)段的中點(diǎn).(1)求證:平面平面;(2)若為線(xiàn)段上一點(diǎn),當(dāng)二面角的余弦值為時(shí),求三棱錐的體積.21.(12分)等差數(shù)列的前項(xiàng)和為,已知,.(Ⅰ)求數(shù)列的通項(xiàng)公式及前項(xiàng)和為;(Ⅱ)設(shè)為數(shù)列的前項(xiàng)的和,求證:.22.(10分)如圖,在直三棱柱中,,,為的中點(diǎn),點(diǎn)在線(xiàn)段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
利用列舉法,從這5部專(zhuān)著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有10種情況,所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【詳解】《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專(zhuān)著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期.記這5部專(zhuān)著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時(shí)期.從這5部專(zhuān)著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有共10種情況,所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的基本事件有,共9種情況,所以所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的概率為.故選D.【點(diǎn)睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時(shí),找準(zhǔn)基本事件個(gè)數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個(gè)數(shù)較少且易一一列舉出的;(2)樹(shù)狀圖法:適合于較為復(fù)雜的問(wèn)題中的基本亊件的探求.在找基本事件個(gè)數(shù)時(shí),一定要按順序逐個(gè)寫(xiě)出:先,….,再,…..依次….…這樣才能避免多寫(xiě)、漏寫(xiě)現(xiàn)象的發(fā)生.2、B【解析】
由,可得,,再將代入即可.【詳解】因?yàn)椋?,?故選:B.【點(diǎn)睛】本題考查平面向量的線(xiàn)性運(yùn)算性質(zhì)以及平面向量基本定理的應(yīng)用,是一道基礎(chǔ)題.3、D【解析】
利用直線(xiàn)與圓相交求出實(shí)數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線(xiàn)與圓相交,則,解得.因此,所求概率為.故選:D.【點(diǎn)睛】本題考查幾何概型概率的計(jì)算,同時(shí)也考查了利用直線(xiàn)與圓相交求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.4、C【解析】
因?yàn)?,,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾担杂?,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.5、A【解析】
利用復(fù)數(shù)的乘法運(yùn)算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.6、B【解析】考點(diǎn):程序框圖.分析:分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運(yùn)行過(guò)程中各變量的值的變化情況,不難給出答案.解:程序在運(yùn)行過(guò)程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當(dāng)i<5時(shí)退出,故選B.7、C【解析】
令,可得,要使得有兩個(gè)實(shí)數(shù)解,即和有兩個(gè)交點(diǎn),結(jié)合已知,即可求得答案.【詳解】令,可得,要使得有兩個(gè)實(shí)數(shù)解,即和有兩個(gè)交點(diǎn),,令,可得,當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減.當(dāng)時(shí),,若直線(xiàn)和有兩個(gè)交點(diǎn),則.實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題主要考查了根據(jù)零點(diǎn)求參數(shù)范圍,解題關(guān)鍵是掌握根據(jù)零點(diǎn)個(gè)數(shù)求參數(shù)的解法和根據(jù)導(dǎo)數(shù)求單調(diào)性的步驟,考查了分析能力和計(jì)算能力,屬于中檔題.8、D【解析】
由成等差數(shù)列得,利用等比數(shù)列的通項(xiàng)公式展開(kāi)即可得到公比q的方程.【詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.【點(diǎn)睛】本題考查等差等比數(shù)列的綜合,利用等差數(shù)列的性質(zhì)建立方程求q是解題的關(guān)鍵,對(duì)于等比數(shù)列的通項(xiàng)公式也要熟練.9、A【解析】
根據(jù)所給函數(shù)解析式滿(mǎn)足的等量關(guān)系及指數(shù)冪運(yùn)算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域?yàn)椋?,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點(diǎn)睛】本題考查了指數(shù)冪的運(yùn)算及化簡(jiǎn),利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應(yīng)用,屬于中檔題.10、B【解析】
畫(huà)出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點(diǎn)個(gè)數(shù),然后轉(zhuǎn)化求解,即可得出結(jié)果.【詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關(guān)于的方程的解有兩個(gè)或三個(gè)(時(shí)有三個(gè),時(shí)有兩個(gè)),所以關(guān)于的方程只能有一個(gè)根(若有兩個(gè)根,則關(guān)于的方程有四個(gè)或五個(gè)根),由,可得的值分別為,則故選B.【點(diǎn)睛】本題考查數(shù)形結(jié)合以及函數(shù)與方程的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力,屬于??碱}型.11、B【解析】
設(shè),則,,因?yàn)椋裕?,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率.故選B.12、C【解析】
利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點(diǎn)睛】本題考查離散型隨機(jī)變量的分布列以及期望的求法,是基本知識(shí)的考查.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意可知的兩根為,再根據(jù)解集的區(qū)間端點(diǎn)得出參數(shù)的關(guān)系,再求解即可.【詳解】解:因?yàn)楹瘮?shù),關(guān)于的不等式的解集是的兩根為:和;所以有:且;且;;故答案為:【點(diǎn)睛】本題主要考查了不等式的解集與參數(shù)之間的關(guān)系,屬于基礎(chǔ)題.14、【解析】
先求得與關(guān)于軸對(duì)稱(chēng)的函數(shù),將問(wèn)題轉(zhuǎn)化為與的圖象有交點(diǎn),即方程有解.對(duì)分成三種情況進(jìn)行分類(lèi)討論,由此求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)殛P(guān)于軸對(duì)稱(chēng)的函數(shù)為,因?yàn)楹瘮?shù)與的圖象上存在關(guān)于軸的對(duì)稱(chēng)點(diǎn),所以與的圖象有交點(diǎn),方程有解.時(shí)符合題意.時(shí)轉(zhuǎn)化為有解,即,的圖象有交點(diǎn),是過(guò)定點(diǎn)的直線(xiàn),其斜率為,若,則函數(shù)與的圖象必有交點(diǎn),滿(mǎn)足題意;若,設(shè),相切時(shí),切點(diǎn)的坐標(biāo)為,則,解得,切線(xiàn)斜率為,由圖可知,當(dāng),即時(shí),,的圖象有交點(diǎn),此時(shí),與的圖象有交點(diǎn),函數(shù)與的圖象上存在關(guān)于軸的對(duì)稱(chēng)點(diǎn),綜上可得,實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求解函數(shù)的零點(diǎn)以及對(duì)稱(chēng)性,函數(shù)與方程等基礎(chǔ)知識(shí),考查學(xué)生分析問(wèn)題,解決問(wèn)題的能力,推理與運(yùn)算求解能力,轉(zhuǎn)化與化歸思想和應(yīng)用意識(shí).15、1【解析】
由雙曲線(xiàn)的漸近線(xiàn),以及求得的值即可得答案.【詳解】由于雙曲線(xiàn)的漸近線(xiàn)與準(zhǔn)線(xiàn)的一個(gè)交點(diǎn)坐標(biāo)為,所以,即①,把代入,得,即②又③聯(lián)立①②③,得.所以.故答案是:1.【點(diǎn)睛】本題考查雙曲線(xiàn)的性質(zhì),注意題目“雙曲線(xiàn)的漸近線(xiàn)與準(zhǔn)線(xiàn)的一個(gè)交點(diǎn)坐標(biāo)為”這一條件的運(yùn)用,另外注意題目中要求的焦距即,容易只計(jì)算到,就得到結(jié)論.16、【解析】
由向量平行的坐標(biāo)表示得出,求解即可得出答案.【詳解】因?yàn)?,所以,解?故答案為:【點(diǎn)睛】本題主要考查了由向量共線(xiàn)或平行求參數(shù),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)函數(shù)在上單調(diào)遞減,在單調(diào)遞增;(Ⅱ);(Ⅲ)證明見(jiàn)解析.【解析】
(Ⅰ)先求出函數(shù)f(x)的導(dǎo)數(shù),通過(guò)解關(guān)于導(dǎo)數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè)g(x)=f(x)﹣ax,先求出函數(shù)g(x)的導(dǎo)數(shù),通過(guò)討論a的范圍,得到函數(shù)的單調(diào)性,從而求出a的最小值;(Ⅲ)先求出數(shù)列是以為首項(xiàng),1為公差的等差數(shù)列,,,問(wèn)題轉(zhuǎn)化為證明:,通過(guò)換元法或數(shù)學(xué)歸納法進(jìn)行證明即可.【詳解】解:(Ⅰ)f(x)的定義域?yàn)椋ī?,+∞),,當(dāng)時(shí),f′(x)<2,當(dāng)時(shí),f′(x)>2,所以函數(shù)f(x)在上單調(diào)遞減,在單調(diào)遞增.(Ⅱ)設(shè),則,因?yàn)閤≥2,故,(?。┊?dāng)a≥1時(shí),1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)單調(diào)遞減,而g(2)=2,所以對(duì)所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)當(dāng)1<a<1時(shí),2<1﹣a<1,若,則g′(x)>2,g(x)單調(diào)遞增,而g(2)=2,所以當(dāng)時(shí),g(x)>2,即f(x)>ax;(ⅲ)當(dāng)a≤1時(shí),1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)單調(diào)遞增,而g(2)=2,所以對(duì)所有的x>2,g(x)>2,即f(x)>ax;綜上,a的最小值為1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an?an+1,由a1=1得,an≠2,所以,數(shù)列是以為首項(xiàng),1為公差的等差數(shù)列,故,,,?,由(Ⅱ)知a=1時(shí),,x>2,即,x>2.法一:令,得,即因?yàn)椋?,故.法二?下面用數(shù)學(xué)歸納法證明.(1)當(dāng)n=1時(shí),令x=1代入,即得,不等式成立(1)假設(shè)n=k(k∈N*,k≥1)時(shí),不等式成立,即,則n=k+1時(shí),,令代入,得,即:,由(1)(1)可知不等式對(duì)任何n∈N*都成立.故.考點(diǎn):1利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;1、利用導(dǎo)數(shù)研究函數(shù)的最值;3、數(shù)列的通項(xiàng)公式;4、數(shù)列的前項(xiàng)和;5、不等式的證明.18、(1)當(dāng)時(shí),無(wú)極值;當(dāng)時(shí),極小值為;(2).【解析】
(1)求導(dǎo),對(duì)參數(shù)進(jìn)行分類(lèi)討論,即可容易求得函數(shù)的極值;(2)構(gòu)造函數(shù),兩次求導(dǎo),根據(jù)函數(shù)單調(diào)性,由恒成立問(wèn)題求參數(shù)范圍即可.【詳解】(1)依題,當(dāng)時(shí),,函數(shù)在上單調(diào)遞增,此時(shí)函數(shù)無(wú)極值;當(dāng)時(shí),令,得,令,得所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.此時(shí)函數(shù)有極小值,且極小值為.綜上:當(dāng)時(shí),函數(shù)無(wú)極值;當(dāng)時(shí),函數(shù)有極小值,極小值為.(2)令易得且,令所以,因?yàn)?,,從而,所以,在上單調(diào)遞增.又若,則所以在上單調(diào)遞增,從而,所以時(shí)滿(mǎn)足題意.若,所以,,在中,令,由(1)的單調(diào)性可知,有最小值,從而.所以所以,由零點(diǎn)存在性定理:,使且在上單調(diào)遞減,在上單調(diào)遞增.所以當(dāng)時(shí),.故當(dāng),不成立.綜上所述:的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究含參函數(shù)的極值,涉及由恒成立問(wèn)題求參數(shù)范圍的問(wèn)題,屬壓軸題.19、(1)詳見(jiàn)解析;(2).【解析】
(1)由直徑所對(duì)的圓周角為,可知,通過(guò)計(jì)算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線(xiàn)面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標(biāo)原點(diǎn),分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,求出相應(yīng)點(diǎn)的坐標(biāo),求出平面的一個(gè)法向量和平面的法向量,利用空間向量數(shù)量積運(yùn)算公式,可以求出二面角的余弦值.【詳解】解:(1)證明:因?yàn)榘雸A弧上的一點(diǎn),所以.在中,分別為的中點(diǎn),所以,且.于是在中,,所以為直角三角形,且.因?yàn)椋?所以.因?yàn)?,,,所以平?又平面,所以平面平面.(2)由已知,以為坐標(biāo)原點(diǎn),分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的一個(gè)法向量為,則即,取,得.設(shè)平面的法向量,則即,取,得.所以,又二面角為銳角,所以二面角的余弦值為.【點(diǎn)睛】本題考查了利用線(xiàn)面垂直判定面面垂直、利用空間向量數(shù)量積求二面角的余弦值問(wèn)題.20、(1)見(jiàn)解析;(2).【解析】
(1)先證明,可證平面,再由可證平面,即得證;(2)以為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系,設(shè),求解面的法向量,面的法向量,利用二面角的余弦值為,可求解,轉(zhuǎn)化即得解.【詳解】(1)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 5G+大數(shù)據(jù):導(dǎo)診服務(wù)的區(qū)域化布局策略
- 天津醫(yī)科大學(xué)眼科醫(yī)院2026年第二批公開(kāi)招聘?jìng)淇碱}庫(kù)附答案詳解
- 2025年北京市第九十九中學(xué)招聘?jìng)淇碱}庫(kù)及一套參考答案詳解
- 2025年大新縣桃城鎮(zhèn)第二衛(wèi)生院公開(kāi)招聘醫(yī)師備考題庫(kù)及1套參考答案詳解
- 3D打印人工椎間盤(pán)的動(dòng)態(tài)穩(wěn)定性分析
- 2025年河南省某國(guó)企工程類(lèi)崗位招聘7人備考題庫(kù)及1套參考答案詳解
- 2025年全球跨境電商物流方案行業(yè)報(bào)告
- 2025年西南財(cái)經(jīng)大學(xué)天府學(xué)院秋季學(xué)期教師招聘107備考題庫(kù)完整參考答案詳解
- 物產(chǎn)中大集團(tuán)2026校園招聘?jìng)淇碱}庫(kù)及參考答案詳解1套
- 簡(jiǎn)約插畫(huà)風(fēng)美甲美容美發(fā)培訓(xùn)課程
- 2026年交管12123學(xué)法減分復(fù)習(xí)考試題庫(kù)附答案(研優(yōu)卷)
- 2025秋人美版(2024)初中美術(shù)八年級(jí)上冊(cè)知識(shí)點(diǎn)及期末測(cè)試卷及答案
- 2025年下半年度浙江省新華書(shū)店集團(tuán)招聘92人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 林地除草合同范本
- 云南高中體育會(huì)考試題及答案
- 2025廣東惠州市城市建設(shè)投資集團(tuán)有限公司社會(huì)招聘9人備考筆試試題及答案解析
- 2025湖北武漢市公安局蔡甸區(qū)分局第二批招聘警務(wù)輔助人員43人考試筆試參考題庫(kù)及答案解析
- 軍事地形學(xué)圖課件
- 新生兒一例個(gè)案護(hù)理
- 23G409先張法預(yù)應(yīng)力混凝土管樁
- 第十二講 建設(shè)社會(huì)主義生態(tài)文明PPT習(xí)概論2023優(yōu)化版教學(xué)課件
評(píng)論
0/150
提交評(píng)論