呼和浩特市重點(diǎn)中學(xué)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第1頁(yè)
呼和浩特市重點(diǎn)中學(xué)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第2頁(yè)
呼和浩特市重點(diǎn)中學(xué)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第3頁(yè)
呼和浩特市重點(diǎn)中學(xué)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第4頁(yè)
呼和浩特市重點(diǎn)中學(xué)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

呼和浩特市重點(diǎn)中學(xué)2024屆中考沖刺卷數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列式子成立的有()個(gè)①﹣的倒數(shù)是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有兩個(gè)不等的實(shí)數(shù)根A.1 B.2 C.3 D.42.下圖是由八個(gè)相同的小正方體組合而成的幾何體,其左視圖是()A. B. C. D.3.如圖,AB是⊙O的直徑,點(diǎn)C、D是圓上兩點(diǎn),且∠AOC=126°,則∠CDB=()A.54° B.64° C.27° D.37°4.如圖,4張如圖1的長(zhǎng)為a,寬為b(a>b)長(zhǎng)方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S2=2S1,則a,b滿足()A.a(chǎn)= B.a(chǎn)=2b C.a(chǎn)=b D.a(chǎn)=3b5.比較4,,的大小,正確的是()A.4<< B.4<<C.<4< D.<<46.如圖是一塊帶有圓形空洞和矩形空洞的小木板,則下列物體中最有可能既可以堵住圓形空洞,又可以堵住矩形空洞的是()A.正方體 B.球 C.圓錐 D.圓柱體7.平面上直線a、c與b相交(數(shù)據(jù)如圖),當(dāng)直線c繞點(diǎn)O旋轉(zhuǎn)某一角度時(shí)與a平行,則旋轉(zhuǎn)的最小度數(shù)是()A.60° B.50° C.40° D.30°8.計(jì)算3a2-a2的結(jié)果是()A.4a2B.3a2C.2a2D.39.如圖,由矩形和三角形組合而成的廣告牌緊貼在墻面上,重疊部分(陰影)的面積是4m2,廣告牌所占的面積是30m2(厚度忽略不計(jì)),除重疊部分外,矩形剩余部分的面積比三角形剩余部分的面積多2m2,設(shè)矩形面積是xm2,三角形面積是ym2,則根據(jù)題意,可列出二元一次方程組為()A. B. C. D.10.如圖,數(shù)軸上有A,B,C,D四個(gè)點(diǎn),其中表示互為倒數(shù)的點(diǎn)是()A.點(diǎn)A與點(diǎn)B B.點(diǎn)A與點(diǎn)D C.點(diǎn)B與點(diǎn)D D.點(diǎn)B與點(diǎn)C11.已知m=,n=,則代數(shù)式的值為()A.3 B.3 C.5 D.912.將拋物線y=A.y=-12C.y=-12二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.某一時(shí)刻,測(cè)得一根高1.5m的竹竿在陽(yáng)光下的影長(zhǎng)為2.5m.同時(shí)測(cè)得旗桿在陽(yáng)光下的影長(zhǎng)為30m,則旗桿的高為_(kāi)_________m.14.因式分解:4x2y﹣9y3=_____.15.已知a+=2,求a2+=_____.16.和平中學(xué)自行車(chē)停車(chē)棚頂部的剖面如圖所示,已知AB=16m,半徑OA=10m,高度CD為_(kāi)___m.17.正十二邊形每個(gè)內(nèi)角的度數(shù)為.18.閱讀材料:如圖,C為線段BD上一動(dòng)點(diǎn),分別過(guò)點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,若AB=4,DE=2,BD=8,則可用含x的代數(shù)式表示AC+CE的長(zhǎng)為.然后利用幾何知識(shí)可知:當(dāng)A、C、E在一條直線上時(shí),x=時(shí),AC+CE的最小值為1.根據(jù)以上閱讀材料,可構(gòu)圖求出代數(shù)式的最小值為_(kāi)____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖所示,一幢樓房AB背后有一臺(tái)階CD,臺(tái)階每層高0.2米,且AC=17.2米,設(shè)太陽(yáng)光線與水平地面的夾角為α,當(dāng)α=60°時(shí),測(cè)得樓房在地面上的影長(zhǎng)AE=10米,現(xiàn)有一老人坐在MN這層臺(tái)階上曬太陽(yáng).(取1.73)(1)求樓房的高度約為多少米?(2)過(guò)了一會(huì)兒,當(dāng)α=45°時(shí),問(wèn)老人能否還曬到太陽(yáng)?請(qǐng)說(shuō)明理由.20.(6分)拋物線y=﹣x2+bx+c(b,c均是常數(shù))經(jīng)過(guò)點(diǎn)O(0,0),A(4,4),與x軸的另一交點(diǎn)為點(diǎn)B,且拋物線對(duì)稱(chēng)軸與線段OA交于點(diǎn)P.(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo);(2)過(guò)點(diǎn)P作x軸的平行線l,若點(diǎn)Q是直線上的動(dòng)點(diǎn),連接QB.①若點(diǎn)O關(guān)于直線QB的對(duì)稱(chēng)點(diǎn)為點(diǎn)C,當(dāng)點(diǎn)C恰好在直線l上時(shí),求點(diǎn)Q的坐標(biāo);②若點(diǎn)O關(guān)于直線QB的對(duì)稱(chēng)點(diǎn)為點(diǎn)D,當(dāng)線段AD的長(zhǎng)最短時(shí),求點(diǎn)Q的坐標(biāo)(直接寫(xiě)出答案即可).21.(6分)如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(﹣2,0),拋物線的對(duì)稱(chēng)軸x=1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.(1)求拋物線的解析式;(2)若點(diǎn)F是直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)F使四邊形ABFC的面積最大,若存在,求出點(diǎn)F的坐標(biāo)和最大值;若不存在,請(qǐng)說(shuō)明理由;(3)平行于DE的一條動(dòng)直線l與直線BC相較于點(diǎn)P,與拋物線相交于點(diǎn)Q,若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,求P點(diǎn)的坐標(biāo).22.(8分)如圖,△ABC中AB=AC,請(qǐng)你利用尺規(guī)在BC邊上求一點(diǎn)P,使△ABC~△PAC不寫(xiě)畫(huà)法,(保留作圖痕跡).23.(8分)已知:如圖,在半徑是4的⊙O中,AB、CD是兩條直徑,M是OB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,且EM>MC,連接DE,DE=.(1)求證:△AMC∽△EMB;(2)求EM的長(zhǎng);(3)求sin∠EOB的值.24.(10分)八年級(jí)(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機(jī)邀請(qǐng)了部分同學(xué)參與問(wèn)卷調(diào)查,統(tǒng)計(jì)同學(xué)們一個(gè)月閱讀課外書(shū)的數(shù)量,并繪制了以下統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解決下列問(wèn)題:(1)共有名同學(xué)參與問(wèn)卷調(diào)查;(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;(3)全校共有學(xué)生1500人,請(qǐng)估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書(shū)的人數(shù)約為多少.25.(10分)“揚(yáng)州漆器”名揚(yáng)天下,某網(wǎng)店專(zhuān)門(mén)銷(xiāo)售某種品牌的漆器筆筒,成本為30元/件,每天銷(xiāo)售量(件)與銷(xiāo)售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.求與之間的函數(shù)關(guān)系式;如果規(guī)定每天漆器筆筒的銷(xiāo)售量不低于240件,當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷(xiāo)售利潤(rùn)中捐出150元給希望工程,為了保證捐款后每天剩余利潤(rùn)不低于3600元,試確定該漆器筆筒銷(xiāo)售單價(jià)的范圍.26.(12分)目前“微信”、“支付寶”、“共享單車(chē)”和“網(wǎng)購(gòu)”給我們的生活帶來(lái)了很多便利,初二數(shù)學(xué)小組在校內(nèi)對(duì)“你最認(rèn)可的四大新生事物”進(jìn)行調(diào)查,隨機(jī)調(diào)查了人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息求出,;請(qǐng)你幫助他們將這兩個(gè)統(tǒng)計(jì)圖補(bǔ)全;根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)估算全校2000名學(xué)生中,大約有多少人最認(rèn)可“微信”這一新生事物?27.(12分)某學(xué)校要了解學(xué)生上學(xué)交通情況,選取七年級(jí)全體學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,畫(huà)出扇形統(tǒng)計(jì)圖(如圖),圖中“公交車(chē)”對(duì)應(yīng)的扇形圓心角為60°,“自行車(chē)”對(duì)應(yīng)的扇形圓心角為120°,已知七年級(jí)乘公交車(chē)上學(xué)的人數(shù)為50人.(1)七年級(jí)學(xué)生中,騎自行車(chē)和乘公交車(chē)上學(xué)的學(xué)生人數(shù)哪個(gè)更多?多多少人?(2)如果全校有學(xué)生2400人,學(xué)校準(zhǔn)備的600個(gè)自行車(chē)停車(chē)位是否足夠?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

根據(jù)倒數(shù)的定義,冪的乘方、二次根式的混合運(yùn)算法則以及根的判別式進(jìn)行判斷.【詳解】解:①﹣的倒數(shù)是﹣2,故正確;②(﹣2a2)3=﹣8a6,故錯(cuò)誤;③(-)=﹣2,故錯(cuò)誤;④因?yàn)椤鳎?﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有兩個(gè)不等的實(shí)數(shù)根,故正確.故選B.【點(diǎn)睛】考查了倒數(shù)的定義,冪的乘方、二次根式的混合運(yùn)算法則以及根的判別式,屬于比較基礎(chǔ)的題目,熟記計(jì)算法則即可解答.2、B【解析】

解:找到從左面看所得到的圖形,從左面可看到從左往右三列小正方形的個(gè)數(shù)為:2,3,1.故選B.3、C【解析】

由∠AOC=126°,可求得∠BOC的度數(shù),然后由圓周角定理,求得∠CDB的度數(shù).【詳解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故選:C.【點(diǎn)睛】此題考查了圓周角定理.注意在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.4、B【解析】

從圖形可知空白部分的面積為S2是中間邊長(zhǎng)為(a﹣b)的正方形面積與上下兩個(gè)直角邊為(a+b)和b的直角三角形的面積,再與左右兩個(gè)直角邊為a和b的直角三角形面積的總和,陰影部分的面積為S1是大正方形面積與空白部分面積之差,再由S2=2S1,便可得解.【詳解】由圖形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故選B.【點(diǎn)睛】本題主要考查了求陰影部分面積和因式分解,關(guān)鍵是正確列出陰影部分與空白部分的面積和正確進(jìn)行因式分解.5、C【解析】

根據(jù)4=<且4=>進(jìn)行比較【詳解】解:易得:4=<且4=>,所以<4<故選C.【點(diǎn)睛】本題主要考查開(kāi)平方開(kāi)立方運(yùn)算。6、D【解析】

本題中,圓柱的俯視圖是個(gè)圓,可以堵住圓形空洞,它的正視圖和左視圖是個(gè)矩形,可以堵住方形空洞.【詳解】根據(jù)三視圖的知識(shí)來(lái)解答.圓柱的俯視圖是一個(gè)圓,可以堵住圓形空洞,而它的正視圖以及側(cè)視圖都為一個(gè)矩形,可以堵住方形的空洞,故圓柱是最佳選項(xiàng).故選D.【點(diǎn)睛】此題考查立體圖形,本題將立體圖形的三視圖運(yùn)用到了實(shí)際中,只要弄清楚了立體圖形的三視圖,解決這類(lèi)問(wèn)題其實(shí)并不難.7、C【解析】

先根據(jù)平角的定義求出∠1的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故選:C.【點(diǎn)睛】本題考查的是平行線的性質(zhì),用到的知識(shí)點(diǎn)為:兩直線平行,同旁內(nèi)角互補(bǔ).8、C【解析】【分析】根據(jù)合并同類(lèi)項(xiàng)法則進(jìn)行計(jì)算即可得.【詳解】3a2-a2=(3-1)a2=2a2,故選C.【點(diǎn)睛】本題考查了合并同類(lèi)項(xiàng),熟記合并同類(lèi)項(xiàng)的法則是解題的關(guān)鍵.合并同類(lèi)項(xiàng)就是把同類(lèi)項(xiàng)的系數(shù)相加減,字母和字母的指數(shù)不變.9、A【解析】

根據(jù)題意找到等量關(guān)系:①矩形面積+三角形面積﹣陰影面積=30;②(矩形面積﹣陰影面積)﹣(三角形面積﹣陰影面積)=4,據(jù)此列出方程組.【詳解】依題意得:.故選A.【點(diǎn)睛】考查了由實(shí)際問(wèn)題抽象出二元一次方程組.根據(jù)實(shí)際問(wèn)題中的條件列方程組時(shí),要注意抓住題目中的一些關(guān)鍵性詞語(yǔ),找出等量關(guān)系,列出方程組.10、A【解析】

試題分析:主要考查倒數(shù)的定義和數(shù)軸,要求熟練掌握.需要注意的是:倒數(shù)的性質(zhì):負(fù)數(shù)的倒數(shù)還是負(fù)數(shù),正數(shù)的倒數(shù)是正數(shù),0沒(méi)有倒數(shù).倒數(shù)的定義:若兩個(gè)數(shù)的乘積是1,我們就稱(chēng)這兩個(gè)數(shù)互為倒數(shù).根據(jù)倒數(shù)定義可知,-2的倒數(shù)是-,有數(shù)軸可知A對(duì)應(yīng)的數(shù)為-2,B對(duì)應(yīng)的數(shù)為-,所以A與B是互為倒數(shù).故選A.考點(diǎn):1.倒數(shù)的定義;2.?dāng)?shù)軸.11、B【解析】

由已知可得:,=.【詳解】由已知可得:,原式=故選:B【點(diǎn)睛】考核知識(shí)點(diǎn):二次根式運(yùn)算.配方是關(guān)鍵.12、D【解析】

將拋物線y=12【詳解】由題意得,a=-12設(shè)旋轉(zhuǎn)180°以后的頂點(diǎn)為(x′,y′),則x′=2×0-(-2)=2,y′=2×3-5=1,∴旋轉(zhuǎn)180°以后的頂點(diǎn)為(2,1),∴旋轉(zhuǎn)180°以后所得圖象的解析式為:y=-1故選D.【點(diǎn)睛】本題考查了二次函數(shù)圖象的旋轉(zhuǎn)變換,在繞拋物線某點(diǎn)旋轉(zhuǎn)180°以后,二次函數(shù)的開(kāi)口大小沒(méi)有變化,方向相反;設(shè)旋轉(zhuǎn)前的的頂點(diǎn)為(x,y),旋轉(zhuǎn)中心為(a,b),由中心對(duì)稱(chēng)的性質(zhì)可知新頂點(diǎn)坐標(biāo)為(2a-x,2b-y),從而可求出旋轉(zhuǎn)后的函數(shù)解析式.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1.【解析】分析:根據(jù)同一時(shí)刻物高與影長(zhǎng)成比例,列出比例式再代入數(shù)據(jù)計(jì)算即可.詳解:∵==,解得:旗桿的高度=×30=1.故答案為1.點(diǎn)睛:本題考查了相似三角形在測(cè)量高度時(shí)的應(yīng)用,解題時(shí)關(guān)鍵是找出相似的三角形,然后根據(jù)對(duì)應(yīng)邊成比例列出方程,建立數(shù)學(xué)模型來(lái)解決問(wèn)題.14、y(2x+3y)(2x-3y)【解析】

直接提取公因式y(tǒng),再利用平方差公式分解因式即可.【詳解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【點(diǎn)睛】此題主要考查了提取公因式法以及公式法分解因式,正確運(yùn)用公式是解題關(guān)鍵.15、1【解析】試題分析:∵==4,∴=4-1=1.故答案為1.考點(diǎn):完全平方公式.16、1.【解析】

由CD⊥AB,根據(jù)垂徑定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理計(jì)算出OD,則通過(guò)CD=OC?OD求出CD.【詳解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半徑OA=10m,∴OD==6,∴CD=OC﹣OD=10﹣6=1(m).故答案為1.【點(diǎn)睛】本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對(duì)的?。部疾榱饲芯€的性質(zhì)定理以及勾股定理.17、【解析】

首先求得每個(gè)外角的度數(shù),然后根據(jù)外角與相鄰的內(nèi)角互為鄰補(bǔ)角即可求解.【詳解】試題分析:正十二邊形的每個(gè)外角的度數(shù)是:=30°,則每一個(gè)內(nèi)角的度數(shù)是:180°﹣30°=150°.故答案為150°.18、4【解析】

根據(jù)已知圖象,重新構(gòu)造直角三角形,利用三角形相似得出CD的長(zhǎng),進(jìn)而利用勾股定理得出最短路徑問(wèn)題.【詳解】如圖所示:C為線段BD上一動(dòng)點(diǎn),分別過(guò)點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,若AB=5,DE=3,BD=12,當(dāng)A,C,E,在一條直線上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即當(dāng)x=時(shí),代數(shù)式有最小值,此時(shí)為:.故答案是:4.【點(diǎn)睛】考查最短路線問(wèn)題,利用了數(shù)形結(jié)合的思想,可通過(guò)構(gòu)造直角三角形,利用勾股定理求解.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)樓房的高度約為17.3米;(2)當(dāng)α=45°時(shí),老人仍可以曬到太陽(yáng).理由見(jiàn)解析.【解析】試題分析:(1)在Rt△ABE中,根據(jù)的正切值即可求得樓高;(2)當(dāng)時(shí),從點(diǎn)B射下的光線與地面AD的交點(diǎn)為F,與MC的交點(diǎn)為點(diǎn)H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大樓的影子落在臺(tái)階MC這個(gè)側(cè)面上.即小貓仍可曬到太陽(yáng).試題解析:解:(1)當(dāng)當(dāng)時(shí),在Rt△ABE中,∵,∴BA=10tan60°=米.即樓房的高度約為17.3米.當(dāng)時(shí),小貓仍可曬到太陽(yáng).理由如下:假設(shè)沒(méi)有臺(tái)階,當(dāng)時(shí),從點(diǎn)B射下的光線與地面AD的交點(diǎn)為F,與MC的交點(diǎn)為點(diǎn)H.∵∠BFA=45°,∴,此時(shí)的影長(zhǎng)AF=BA=17.3米,所以CF=AF-AC=17.3-17.2=0.1.∴CH=CF=0.1米,∴大樓的影子落在臺(tái)階MC這個(gè)側(cè)面上.∴小貓仍可曬到太陽(yáng).考點(diǎn):解直角三角形.20、(1)y=﹣(x﹣)2+;(,);(2)①(﹣,)或(,);②(0,);【解析】

1)把0(0,0),A(4,4v3)的坐標(biāo)代入y=﹣x2+bx+c,轉(zhuǎn)化為解方程組即可.(2)先求出直線OA的解析式,點(diǎn)B坐標(biāo),拋物線的對(duì)稱(chēng)軸即可解決問(wèn)題.(3)①如圖1中,點(diǎn)O關(guān)于直線BQ的對(duì)稱(chēng)點(diǎn)為點(diǎn)C,當(dāng)點(diǎn)C恰好在直線l上時(shí),首先證明四邊形BOQC是菱形,設(shè)Q(m,),根據(jù)OQ=OB=5,可得方程,解方程即可解決問(wèn)題.②如圖2中,由題意點(diǎn)D在以B為圓心5為半徑的OB上運(yùn)動(dòng),當(dāng)A,D、B共線時(shí),線段AD最小,設(shè)OD與BQ交于點(diǎn)H.先求出D、H兩點(diǎn)坐標(biāo),再求出直線BH的解析式即可解決問(wèn)題.【詳解】(1)把O(0,0),A(4,4)的坐標(biāo)代入y=﹣x2+bx+c,得,解得,∴拋物線的解析式為y=﹣x2+5x=﹣(x﹣)2+.所以拋物線的頂點(diǎn)坐標(biāo)為(,);(2)①由題意B(5,0),A(4,4),∴直線OA的解析式為y=x,AB==7,∵拋物線的對(duì)稱(chēng)軸x=,∴P(,).如圖1中,點(diǎn)O關(guān)于直線BQ的對(duì)稱(chēng)點(diǎn)為點(diǎn)C,當(dāng)點(diǎn)C恰好在直線l上時(shí),∵QC∥OB,∴∠CQB=∠QBO=∠QBC,∴CQ=BC=OB=5,∴四邊形BOQC是平行四邊形,∵BO=BC,∴四邊形BOQC是菱形,設(shè)Q(m,),∴OQ=OB=5,∴m2+()2=52,∴m=±,∴點(diǎn)Q坐標(biāo)為(﹣,)或(,);②如圖2中,由題意點(diǎn)D在以B為圓心5為半徑的⊙B上運(yùn)動(dòng),當(dāng)A、D、B共線時(shí),線段AD最小,設(shè)OD與BQ交于點(diǎn)H.∵AB=7,BD=5,∴AD=2,D(,),∵OH=HD,∴H(,),∴直線BH的解析式為y=﹣x+,當(dāng)y=時(shí),x=0,∴Q(0,).【點(diǎn)睛】本題二次函數(shù)與一次函數(shù)的關(guān)系、幾何動(dòng)態(tài)問(wèn)題、最值問(wèn)題、作輔助圓解決問(wèn)題,難度較大,需積極思考,靈活應(yīng)對(duì).21、(1)、y=-+x+4;(2)、不存在,理由見(jiàn)解析.【解析】試題分析:(1)、首先設(shè)拋物線的解析式為一般式,將點(diǎn)C和點(diǎn)A意見(jiàn)對(duì)稱(chēng)軸代入求出函數(shù)解析式;(2)、本題利用假設(shè)法來(lái)進(jìn)行證明,假設(shè)存在這樣的點(diǎn),然后設(shè)出點(diǎn)F的坐標(biāo)求出FH和FG的長(zhǎng)度,然后得出面積與t的函數(shù)關(guān)系式,根據(jù)方程無(wú)解得出結(jié)論.試題解析:(1)、∵拋物線y=a+bx+c(a≠0)過(guò)點(diǎn)C(0,4)∴C=4①∵-=1∴b=-2a②∵拋物線過(guò)點(diǎn)A(-2,0)∴4a-2b+c="0"③由①②③解得:a=-,b=1,c=4∴拋物線的解析式為:y=-+x+4(2)、不存在假設(shè)存在滿足條件的點(diǎn)F,如圖所示,連結(jié)BF、CF、OF,過(guò)點(diǎn)F作FH⊥x軸于點(diǎn)H,F(xiàn)G⊥y軸于點(diǎn)G.設(shè)點(diǎn)F的坐標(biāo)為(t,+t+4),其中0<t<4則FH=+t+4FG=t∴△OBF的面積=OB·FH=×4×(+t+4)=-+2t+8△OFC的面積=OC·FG=2t∴四邊形ABFC的面積=△AOC的面積+△OBF的面積+△OFC的面積=-+4t+12令-+4t+12=17即-+4t-5=0△=16-20=-4<0∴方程無(wú)解∴不存在滿足條件的點(diǎn)F考點(diǎn):二次函數(shù)的應(yīng)用22、見(jiàn)解析【解析】

根據(jù)題意作∠CBA=∠CAP即可使得△ABC~△PAC.【詳解】如圖,作∠CBA=∠CAP,P點(diǎn)為所求.【點(diǎn)睛】此題主要考查相似三角形的尺規(guī)作圖,解題的關(guān)鍵是作一個(gè)角與已知角相等.23、(1)證明見(jiàn)解析;(2)EM=4;(3)sin∠EOB=.【解析】

(1)連接A、C,E、B點(diǎn),那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對(duì)應(yīng)角相等,即可得△AMC∽△EMB;

(2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長(zhǎng)度,根據(jù)已知條件推出AM、BM的長(zhǎng)度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長(zhǎng)度;

(3)過(guò)點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,通過(guò)作輔助線,解直角三角形,結(jié)合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長(zhǎng)度,根據(jù)銳角三角函數(shù)的定義,便可求得sin∠EOB的值.【詳解】(1)證明:連接AC、EB,如圖1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直徑,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC為正數(shù),∴EC=7,∵M(jìn)為OB的中點(diǎn),∴BM=2,AM=6,∵AM?BM=EM?CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:過(guò)點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,如圖2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.【點(diǎn)睛】本題考查了圓心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握?qǐng)A心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì).24、(1)100;(2)補(bǔ)圖見(jiàn)解析;(3)570人.【解析】

(1)由讀書(shū)1本的人數(shù)及其所占百分比可得總?cè)藬?shù);(2)總?cè)藬?shù)乘以讀4本的百分比求得其人數(shù),減去男生人數(shù)即可得出女生人數(shù),用讀2本的人數(shù)除以總?cè)藬?shù)可得對(duì)應(yīng)百分比;(3)總?cè)藬?shù)乘以樣本中讀2本人數(shù)所占比例.【詳解】(1)參與問(wèn)卷調(diào)查的學(xué)生人數(shù)為(8+2)÷10%=100人,故答案為:100;(2)讀4本的女生人數(shù)為100×15%﹣10=5人,讀2本人數(shù)所占百分比為20+補(bǔ)全圖形如下:(3)估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書(shū)的人數(shù)約為1500×38%=570人.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大小.25、(1);(2)單價(jià)為46元時(shí),利潤(rùn)最大為3840元.(3)單價(jià)的范圍是45元到55元.【解析】

(1)可用待定系數(shù)法來(lái)確定y與x之間的函數(shù)關(guān)系式;(2)根據(jù)利潤(rùn)=銷(xiāo)售量×單件的利潤(rùn),然后將(1)中的函數(shù)式代入其中,求出利潤(rùn)和銷(xiāo)售單件之間的關(guān)系式,然后根據(jù)其性質(zhì)來(lái)判斷出最大利潤(rùn);(3)首先得出w與x的函數(shù)關(guān)系式,進(jìn)而利用所獲利潤(rùn)等于3600元時(shí),對(duì)應(yīng)x的值,根據(jù)增減性,求出x的取值范圍.【詳解】(1)由題意得:.故y與x之間的函數(shù)關(guān)系式為:y=-10x+700,(2)由題意,得-10x+700≥240,解得x≤46,設(shè)利潤(rùn)為w=(x-30)?y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論