版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Artificialintelligence,
MachineLearning
and
DeepLearning
aretermsyoumighthearoften,butcanyoureallytellthedifferencebetweenthethree?Let’sfindout.
ArtificialIntelligence
Abitofhistory
Theterm
ArtificialIntelligence
firstappearedin1956duringa
Dartmouthconference
tointroducecomputermethodsthatwouldbeabletodemonstratereasonandcreativityinsolvingtaskswithgreaterefficiencyandproductivitythanhumans.
Evolutionoftheterm
+442071835820
info@magora.co.uk
sales@magora.co.uk
Whenwe’retalkingabouttheAIoftoday,weshouldn’tinterpret“intelligence”inthesamewayas“intellect”.
Creatinghuman-likemachinesisafairlyinterestingconceptfromascientificpointofviewbutisn’twhatindustriesdemand.
Wedon’tneedemotionalrobotslikeinthefilm“BicentennialMan”.Whatwedoneedistoprovidelightning-fastcustomersupport,analysefinancialtrendswithadvancedaccuracyandincreasesafetybycheckinginvisitorsusingasystemthatcannotbefooledorbribed.Andthiscanbeachievedbyapplyingadvanced
mathematicalalgorithms
.
So,AIisascientificfieldthatistryingtomodelthemostsignificantintellectualfunctionsofthehumanbrain:
naturallanguageprocessing
,autonomouslearningandcreativity.
However,withinthescopeofthisterm,wecanalsoreferto
ITareaofexpertise.Thegoalistocreateintelligentsystemsthatcanmakereasonabledecisionsandtakeindependentactionsinordertosolvetasks,thusliberatingstafffromroutinejobs,optimisingbusinessprocessesandsoon;
itcanbealsounderstoodasthegeneralabilityofanartificiallymodifiedsystemtointerprettheenvironmentordatainput,learnfromitandusethisknowledgetoachievecertaingoals.
AIspecialistsaremainlygoingintwodirections:
solvingproblemsconnectedwiththedevelopmentandimplementationof
AIsystems
inordertobringthemfurtherinlinewithhumancapabilities;
creatingsoftwarethatconnectsallthelatestachievementsintoonesystemeffectiveatsatisfyingtheneedsofthemarket.
+442071835820
info@magora.co.uk
sales@magora.co.uk
InordertocreateanArtificialIntelligencesolution,weneedtoapplyoneorseveralofthefollowingmethods:
MachineReasoning–thisencompassestheprocessesofplanning,datarepresentation,searchingandoptimisationforAIsystems;
Robotics–thisisthefieldofsciencethatconcernsbuilding,developingandcontrollingrobots,includinghardwareissues(sensors,trackersanddrives)andintegrationofallthecomponentsintothecybersystems’architecture;
MachineLearningisthestudyofalgorithmsandcomputermodelsasusedbymachinesinordertoperformagiventask.SomeexamplesareClassicalLearning,NeuralnetworksandReinforcementLearning.
Allinall,artificialintelligenceincludesmachinelearningasoneofthemethodsofitspracticalimplementation.Withinmachinelearning,therearemanydifferentalgorithmssuchas
T-
distributedscholasticneighbour
embedding,
Leabra
and
Neuralnetworks(NN)
.Inturn,DeeplearningisjustoneoftheimplementationmethodsforNNalgorithms,alsoknownasdeepneurallearningordeepneuralnetwork.
AbitmoreaboutMachineLearningandDeepLearning
+442071835820
info@magora.co.uk
sales@magora.co.uk
YoucancallMachineLearningaclassoragroupofmethodsthathasthegoalofteachingacomputertosolveataskduringtheprocessofcrackingsimilartasksandfindingpatterns.Therearedifferentwaystoclassifythesemethods.
Thisisthesystemwehavechosen:
supervised,whereahumanguidesthecomputerandcorrectsitsmistakes;unsupervised,wherethemachinelearnstofindpatternsbyitself;
reinforcement-throughasystemoftreatsandpunishmentsthecomputerlearnstotaketheoptimumactionsinacertainenvironment.
Nowlet’shaveamoredetailedlookathowexactlytheprocessofMachinelearninghappens.
Howdoesthecomputerlearn?
DataScience
+442071835820
info@magora.co.uk
sales@magora.co.uk
DataScienceliesattheheartofAItechnology.WhatdodatascientistsdoandhowisitconnectedwithMachineLearning?
Forthecomputertolearnitisnecessarytohavethesethreecomponents:
Adataset–acollectionofvaluesthatrelatetoaparticulararea.Forinstance,aclassregisterisadatabaseofgradesofacertaingroupofstudentsinmanydifferentsubjects;
features–atraitthatrepresentsmeasurablepiecesofdatathatcanbeusedforanalysis.Followingourexample,itcantaketheformofcolumnssuchas“Name”,“Subject”or“Grade”;algorithm–computermethodsofsolvingacertaintask.Forexample,youcanwriteanalgorithmthatcalculatestheaveragescoreineachsubject.
Datascientists
arethepeoplewhocollect,filterandclassifydatainordertoprovidethecomputerwithclearmaterialbywhichtolearn.Errorsandlacunesindatabasesleadtoincorrectresults.So,withouttheworkofdatascientists,eventhemostsophisticatedAIalgorithmsareuseless.
Computerlearning
+442071835820
info@magora.co.uk
sales@magora.co.uk
TomakeMLworkyouneedahugecollectionofdata–thiscancompriseimages,videos,textorevensituations.Youwanttoteachthecomputertoperformacertainaction–forexample,findphotosthatcontainkitties–andputthemintoaspecialfolder.
Foreachimagethatyoushowthecomputerinthiscase,oneresponsewouldbegiven–it’seitherakittyornotakitty.Thisdependencybetweentheobject(theimage)andresponse(kittyornotkitty)iscalledatrainingset.
+442071835820
info@magora.co.uk
sales@magora.co.uk
IfyouchoosetoworkwithDeepLearning,yousimplydownload100thousandimagesofkittiestotheprocessorandwaituntilitfindsthepatterns–fourlegs,twoears,atailandsoon.Themachineneedstoretrievethehiddenpatternsinordertobuildanalgorithmthatisabletoprovideaclassificationpreciseenoughtoapplytoeverypossibleinputobject.
Aninductionmethodlike
ReinforcementLearning
impliesthatyouallowthecomputertolearnbyitselfthroughtrialanderror.Thecomputergetsarewardeverytimeitdoessomethingright.Forexample,inthecaseofadriverlesscar,nothittingthepassengerwillearnit+500points.Ifitmakesmistakesthehumanwilldeductthepoints–verysimilartothewayinwhichchildrenlearn.Inclassicalmachinelearning,youcaneithersitandhighlightthetraitstypicalforcatsyourself,oryoucanuseunsupervisedmethodslikeclassificationandclustering.Inordertoestimatetheprecisionoftheresponsesyouget,youneedtoinventfunctionalqualitycriteria.
Inreallife,thetaskscanbeverydifferent.Forexample,thedataconcerningtheobjectscanbeincomplete,imprecise,non-quantitativeandheterogeneous.Variousmethodscopewithcertaintasksbetterthanwithothers,whichiswhythereareso
manydifferentmethods
.
Asfortheresults,machinessometimesdoachieveimpressiveresultsin
diagnosisand
businessintelligence
,thoughthey’restillveryfarfrombeingabletolearnwithouthumanhelp.
Moredetailsaboutdeeplearningareavailableviathis
link.
Popularmachinelearningalgorithms
+442071835820
info@magora.co.uk
sales@magora.co.uk
WehavealreadytalkedaboutDeepLearningandReinforcementLearning,butthereareotherpopularalgorithmsthatweuseeveryday.Forexample:
NaiveBayesclassifier
–usedforspamfiltration,frauddetectionandsentimentanalysis.
Regression–oftenappliedtoforecaststockfluctuationsandmedicaldiagnosis.
Clustering–usedtoanalyseandlabeldataformarketsegmentationandconsumerbehaviour.
Generalisation–recommendationsystems,riskmanagement.
NeuralNetworks–betterthananyothersystemforfacerecognition,butcopeswellwithpracticallyanytask.
Todayit’sbelievedthattrainingcomputerstothinklikehumansismorelikelytobeachievedthroughtheuseofneuralnetworks.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 熱敏電阻器制造工崗后測(cè)試考核試卷含答案
- 交換機(jī)務(wù)員安全實(shí)踐水平考核試卷含答案
- 煉鋼原料加工工標(biāo)準(zhǔn)化強(qiáng)化考核試卷含答案
- 煤制油生產(chǎn)工QC管理能力考核試卷含答案
- 棉膠液制備工安全專(zhuān)項(xiàng)評(píng)優(yōu)考核試卷含答案
- 燃料值班員安全規(guī)程模擬考核試卷含答案
- 水生植物栽培工沖突管理強(qiáng)化考核試卷含答案
- 脂肪醇胺化操作工安全文明模擬考核試卷含答案
- 抽紗刺繡工崗后考核試卷含答案
- 2024年舟山市特崗教師招聘真題匯編附答案
- 廣東省深圳市龍華區(qū)2024-2025學(xué)年七年級(jí)上學(xué)期期末歷史試題(含答案)
- 74粉色花卉背景的“呵護(hù)女性心理健康遇見(jiàn)更美的自己”婦女節(jié)女性健康講座模板
- 2026長(zhǎng)治日?qǐng)?bào)社工作人員招聘勞務(wù)派遣人員5人備考題庫(kù)新版
- 煤礦兼職教師培訓(xùn)課件
- 2025至2030中國(guó)組網(wǎng)專(zhuān)線(xiàn)行業(yè)調(diào)研及市場(chǎng)前景預(yù)測(cè)評(píng)估報(bào)告
- 2025年南京科技職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試模擬測(cè)試卷附答案
- 湖北省武漢市東湖新技術(shù)開(kāi)發(fā)區(qū) 2024-2025學(xué)年七年級(jí)上學(xué)期期末道德與法治試卷
- 擋土墻施工安全培訓(xùn)課件
- 慢性腎臟?。–KD)患者隨訪(fǎng)管理方案
- 采購(gòu)主管年終工作總結(jié)
- 成人學(xué)歷提升項(xiàng)目培訓(xùn)
評(píng)論
0/150
提交評(píng)論