2023-2024學年河南省駐馬店市西平五中學中考數學仿真試卷含解析_第1頁
2023-2024學年河南省駐馬店市西平五中學中考數學仿真試卷含解析_第2頁
2023-2024學年河南省駐馬店市西平五中學中考數學仿真試卷含解析_第3頁
2023-2024學年河南省駐馬店市西平五中學中考數學仿真試卷含解析_第4頁
2023-2024學年河南省駐馬店市西平五中學中考數學仿真試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年河南省駐馬店市西平五中學中考數學仿真試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某公園里鮮花的擺放如圖所示,第①個圖形中有3盆鮮花,第②個圖形中有6盆鮮花,第③個圖形中有11盆鮮花,……,按此規(guī)律,則第⑦個圖形中的鮮花盆數為()A.37 B.38 C.50 D.512.把圖中的五角星圖案,繞著它的中心點O進行旋轉,若旋轉后與自身重合,則至少旋轉()A.36° B.45° C.72° D.90°3.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.4.如圖,由兩個相同的正方體和一個圓錐體組成一個立體圖形,其俯視圖是A. B. C. D.5.如圖,平面直角坐標中,點A(1,2),將AO繞點A逆時針旋轉90°,點O的對應點B恰好落在雙曲線y=kxA.2 B.3 C.4 D.66.某工程隊開挖一條480米的隧道,開工后,每天比原計劃多挖20米,結果提前4天完成任務,若設原計劃每天挖米,那么求時所列方程正確的是()A. B.C. D.7.如圖,中,,,將繞點逆時針旋轉得到,使得,延長交于點,則線段的長為()A.4 B.5 C.6 D.78.如圖,點C是直線AB,DE之間的一點,∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°9.已知點、都在反比例函數的圖象上,則下列關系式一定正確的是()A. B. C. D.10.下列事件中是必然事件的是()A.早晨的太陽一定從東方升起B(yǎng).中秋節(jié)的晚上一定能看到月亮C.打開電視機,正在播少兒節(jié)目D.小紅今年14歲,她一定是初中學生二、填空題(共7小題,每小題3分,滿分21分)11.讓我們輕松一下,做一個數字游戲:第一步:取一個自然數,計算得;第二步:算出的各位數字之和得,計算得;第三步:算出的各位數字之和得,再計算得;依此類推,則____________12.如圖所示,在平面直角坐標系中,已知反比例函數y=(x>0)的圖象和菱形OABC,且OB=4,tan∠BOC=,若將菱形向右平移,菱形的兩個頂點B、C恰好同時落在反比例函數的圖象上,則反比例函數的解析式是______________.13.的算術平方根是_______.14.如圖,在平面直角坐標系xOy中,四邊形OABC是正方形,點C(0,4),D是OA中點,將△CDO以C為旋轉中心逆時針旋轉90°后,再將得到的三角形平移,使點C與點O重合,寫出此時點D的對應點的坐標:_____.15.如圖,A、B是雙曲線y=上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若D為OB的中點,△ADO的面積為3,則k的值為_____.16.如圖,在平面直角坐標系中,四邊形OABC是邊長為2的正方形,頂點A、C分別在x軸、y軸的正半軸上,點Q在對角線OB上,若OQ=OC,則點Q的坐標為_______.17.如圖,正方形ABCD的邊長為2,分別以A、D為圓心,2為半徑畫弧BD、AC,則圖中陰影部分的面積為_____.三、解答題(共7小題,滿分69分)18.(10分)為了增強居民節(jié)水意識,某市自來水公司對居民用水采用以戶為單位分段計費辦法收費.若用戶的月用水量不超過15噸,每噸收水費4元;用戶的月用水量超過15噸,超過15噸的部分,按每噸6元收費.(I)根據題意,填寫下表:月用水量(噸/戶)41016……應收水費(元/戶)40……(II)設一戶居民的月用水量為x噸,應收水費y元,寫出y關于x的函數關系式;(III)已知用戶甲上個月比用戶乙多用水6噸,兩戶共收水費126元,求他們上個月分別用水多少噸?19.(5分)如圖,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圓⊙O上的一動點(點P與點C位于直線AB的異側)連接AP、BP,延長AP到D,使PD=PB,連接BD.(1)求證:PC∥BD;(2)若⊙O的半徑為2,∠ABP=60°,求CP的長;(3)隨著點P的運動,的值是否會發(fā)生變化,若變化,請說明理由;若不變,請給出證明.20.(8分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.求證:(1)AE=BF;(2)AE⊥BF.21.(10分)如圖所示,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上).把△ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的△A1B1C1;把△A1B1C1繞點A1按逆時針方向旋轉90°,在網格中畫出旋轉后的△A1B2C2;如果網格中小正方形的邊長為1,求點B經過(1)、(2)變換的路徑總長.22.(10分)有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7分鐘同時到達C點,乙機器人始終以60米/分的速度行走,如圖是甲、乙兩機器人之間的距離y(米)與他們的行走時間x(分鐘)之間的函數圖象,請結合圖象,回答下列問題:(1)A、B兩點之間的距離是米,甲機器人前2分鐘的速度為米/分;(2)若前3分鐘甲機器人的速度不變,求線段EF所在直線的函數解析式;(3)若線段FG∥x軸,則此段時間,甲機器人的速度為米/分;(4)求A、C兩點之間的距離;(5)若前3分鐘甲機器人的速度不變,直接寫出兩機器人出發(fā)多長時間相距28米.23.(12分)如圖,四邊形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足為E,求證:AE=CE.24.(14分)如圖,在等邊三角形ABC中,點D,E分別在BC,AB上,且∠ADE=60°.求證:△ADC~△DEB.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】試題解析:第①個圖形中有盆鮮花,第②個圖形中有盆鮮花,第③個圖形中有盆鮮花,…第n個圖形中的鮮花盆數為則第⑥個圖形中的鮮花盆數為故選C.2、C【解析】分析:五角星能被從中心發(fā)出的射線平分成相等的5部分,再由一個周角是360°即可求出最小的旋轉角度.詳解:五角星可以被中心發(fā)出的射線平分成5部分,那么最小的旋轉角度為:360°÷5=72°.故選C.點睛:本題考查了旋轉對稱圖形的概念:把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角.3、B【解析】試題分析:結合三個視圖發(fā)現,應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.4、D【解析】

由圓錐的俯視圖可快速得出答案.【詳解】找到從上面看所得到的圖形即可,注意所有的看到的棱都應表現在俯視圖中,從幾何體的上面看:可以得到兩個正方形,右邊的正方形里面有一個內接圓.故選D.【點睛】本題考查立體圖形的三視圖,熟記基本立體圖的三視圖是解題的關鍵.5、B【解析】

作AC⊥y軸于C,ADx軸,BD⊥y軸,它們相交于D,有A點坐標得到AC=1,OC=1,由于AO繞點A逆時針旋轉90°,點O的對應B點,所以相當是把△AOC繞點A逆時針旋轉90°得到△ABD,根據旋轉的性質得AD=AC=1,BD=OC=1,原式可得到B點坐標為(2,1),然后根據反比例函數圖象上點的坐標特征計算k的值.【詳解】作AC⊥y軸于C,AD⊥x軸,BD⊥y軸,它們相交于D,如圖,∵A點坐標為(1,1),∴AC=1,OC=1.∵AO繞點A逆時針旋轉90°,點O的對應B點,即把△AOC繞點A逆時針旋轉90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B點坐標為(2,1),∴k=2×1=2.故選B.【點睛】本題考查了反比例函數圖象上點的坐標特征:反比例函數y=kx(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k6、C【解析】

本題的關鍵描述語是:“提前1天完成任務”;等量關系為:原計劃用時?實際用時=1.【詳解】解:原計劃用時為:,實際用時為:.所列方程為:,故選C.【點睛】本題考查列分式方程,分析題意,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.7、B【解析】

先利用已知證明,從而得出,求出BD的長度,最后利用求解即可.【詳解】故選:B.【點睛】本題主要考查相似三角形的判定及性質,掌握相似三角形的性質是解題的關鍵.8、B【解析】

延長AC交DE于點F,根據所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【詳解】延長AC交DE于點F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.【點睛】本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;

②內錯角相等,兩直線平行;③同旁內角互補,兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內,垂直于同一直線的兩條直線互相平行.9、A【解析】分析:根據反比例函數的性質,可得答案.詳解:由題意,得k=-3,圖象位于第二象限,或第四象限,在每一象限內,y隨x的增大而增大,∵3<6,∴x1<x2<0,故選A.點睛:本題考查了反比例函數,利用反比例函數的性質是解題關鍵.10、A【解析】

必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件,依據定義即可求解.【詳解】解:B、C、D選項為不確定事件,即隨機事件.故錯誤;

一定發(fā)生的事件只有第一個答案,早晨的太陽一定從東方升起.故選A.【點睛】該題考查的是對必然事件的概念的理解;必然事件就是一定發(fā)生的事件.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

根據題意可以分別求得a1,a2,a3,a4,從而可以發(fā)現這組數據的特點,三個一循環(huán),從而可以求得a2019的值.【詳解】解:由題意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=1,a4=(1+2+2)2+1=26,…∴2019÷3=673,∴a2019=a3=1,故答案為:1.【點睛】本題考查數字變化類規(guī)律探索,解題的關鍵是明確題意,求出前幾個數,觀察數的變化特點,求出a2019的值.12、【解析】解:連接AC,交y軸于D.∵四邊形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).設菱形平移后B的坐標是(x,4),C的坐標是(1+x,2).∵B、C落在反比例函數的圖象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐標是(1,4),代入反比例函數的解析式得:k=1×4=4,即B、C落在反比例函數的圖象上,菱形的平移距離是1,反比例函數的解析式是y=.故答案為y=.點睛:本題考查了菱形的性質,用待定系數法求反比例函數的解析式,平移的性質的應用,主要考查學生的計算能力.13、3【解析】

根據算術平方根定義,先化簡,再求的算術平方根.【詳解】因為=9所以的算術平方根是3故答案為3【點睛】此題主要考查了算術平方根的定義,解題需熟練掌握平方根和算術平方根的概念且區(qū)分清楚,才不容易出錯.要熟悉特殊數字0,1,-1的特殊性質.14、(4,2).【解析】

利用圖象旋轉和平移可以得到結果.【詳解】解:∵△CDO繞點C逆時針旋轉90°,得到△CBD′,則BD′=OD=2,∴點D坐標為(4,6);當將點C與點O重合時,點C向下平移4個單位,得到△OAD′′,∴點D向下平移4個單位.故點D′′坐標為(4,2),故答案為(4,2).【點睛】平移和旋轉:平移是指在同一平面內,將一個圖形整體按照某個直線方向移動一定的距離,這樣的圖形運動叫做圖形的平移運動,簡稱平移.定義在平面內,將一個圖形繞一點按某個方向轉動一個角度,這樣的運動叫做圖形的旋轉.這個定點叫做旋轉中心,轉動的角度叫做旋轉角.15、1.【解析】過點B作BE⊥x軸于點E,根據D為OB的中點可知CD是△OBE的中位線,即CD=BE,設A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結論.解:如圖所示,過點B作BE⊥x軸于點E,∵D為OB的中點,∴CD是△OBE的中位線,即CD=BE.設A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.16、(2,2)【解析】如圖,過點Q作QD⊥OA于點D,∴∠QDO=90°.∵四邊形OABC是正方形,且邊長為2,OQ=OC,∴∠QOA=45°,OQ=OC=2,∴△ODQ是等腰直角三角形,∴OD=OQ=22=2∴點Q的坐標為(217、2﹣【解析】

過點F作FE⊥AD于點E,則AE=AD=AF,故∠AFE=∠BAF=30°,再根據勾股定理求出EF的長,由S弓形AF=S扇形ADF-S△ADF可得出其面積,再根據S陰影=2(S扇形BAF-S弓形AF)即可得出結論【詳解】如圖所示,過點F作FE⊥AD于點E,∵正方形ABCD的邊長為2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S陰影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【點睛】本題考查了扇形的面積公式和長方形性質的應用,關鍵是根據圖形的對稱性分析,主要考查學生的計算能力.三、解答題(共7小題,滿分69分)18、(Ⅰ)16;66;(Ⅱ)當x≤15時,y=4x;當x>15時,y=6x﹣30;(Ⅲ)居民甲上月用水量為18噸,居民乙用水12噸【解析】

(Ⅰ)根據題意計算即可;(Ⅱ)根據分段函數解答即可;(Ⅲ)根據題意,可以分段利用方程或方程組解決用水量問題.【詳解】解:(Ⅰ)當月用水量為4噸時,應收水費=4×4=16元;當月用水量為16噸時,應收水費=15×4+1×6=66元;故答案為16;66;(Ⅱ)當x≤15時,y=4x;當x>15時,y=15×4+(x﹣15)×6=6x﹣30;(Ⅲ)設居民甲上月用水量為X噸,居民乙用水(X﹣6)噸.由題意:X﹣6<15且X>15時,4(X﹣6)+15×4+(X﹣15)×6=126X=18,∴居民甲上月用水量為18噸,居民乙用水12噸.【點睛】本題考查的是用一次函數解決實際問題,此類題是近年中考中的熱點問題.注意在實際問題中,利用方程或方程組是解決問題的常用方法.19、(1)證明見解析;(2)+;(3)的值不變,.【解析】

(1)根據等腰三角形的性質得到∠ABC=45°,∠ACB=90°,根據圓周角定理得到∠APB=90°,得到∠APC=∠D,根據平行線的判定定理證明;(2)作BH⊥CP,根據正弦、余弦的定義分別求出CH、PH,計算即可;(3)證明△CBP∽△ABD,根據相似三角形的性質解答.【詳解】(1)證明:∵△ABC是等腰直角三角形,且AC=BC,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB為⊙O的直徑,∴∠APB=90°,∵PD=PB,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足為H,∵⊙O的半徑為2,∠ABP=60°,∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC?cos∠BCH=,BH=BC?sin∠BCH=,在Rt△BHP中,PH=BH=,∴CP=CH+PH=+;(3)的值不變,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴=,∴=,即=.【點睛】本題考查的是圓周角定理、相似三角形的判定和性質以及銳角三角函數的概念,掌握圓周角定理、相似三角形的判定定理和性質定理是解題的關鍵.20、見解析【解析】

(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延長AE交BF于D,交OB于C,則∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.21、(1)(2)作圖見解析;(3).【解析】

(1)利用平移的性質畫圖,即對應點都移動相同的距離.(2)利用旋轉的性質畫圖,對應點都旋轉相同的角度.(3)利用勾股定理和弧長公式求點B經過(1)、(2)變換的路徑總長.【詳解】解:(1)如答圖,連接AA1,然后從C點作AA1的平行線且A1C1=AC,同理找到點B1,分別連接三點,△A1B1C1即為所求.(2)如答圖,分別將A1B1,A1C1繞點A1按逆時針方向旋轉90°,得到B2,C2,連接B2C2,△A1B2C2即為所求.(3)∵,∴點B所走的路徑總長=.考點:1.網格問題;2.作圖(平移和旋轉變換);3.勾股定理;4.弧長的計算.22、(1)距離是70米,速度為95米/分;(2)y=35x﹣70;(3)速度為60米/分;(4)=490米;(5)兩機器人出發(fā)1.2分或2.1分或4.6分相距21米.【解析】

(1)當x=0時的y值即為A、B兩點之間的距離,由圖可知當=2時,甲追上了乙,則可知(甲速度-乙速度)×時間=A、B兩點之間的距離;(2)由題意求解E、F兩點坐標,再用待定系數法求解直線解析式即可;(3)由圖可知甲、乙速度相同;(4)由乙的速度和時間可求得BC之間的距離,再加上AB之間的距離即為AC之間的距離;(5)分0-2分鐘、2-3分鐘和4-7分鐘三段考慮.【詳解】解:(1)由圖象可知,A、B兩點之間的距離是70米,甲機器人前2分鐘的速度為:(70+60×2)÷2=95米

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論