威海市重點中學2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第1頁
威海市重點中學2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第2頁
威海市重點中學2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第3頁
威海市重點中學2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第4頁
威海市重點中學2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

威海市重點中學2023-2024學年中考數(shù)學對點突破模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下面計算中,正確的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a2?a5=a72.圖為一根圓柱形的空心鋼管,它的主視圖是()A. B. C. D.3.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.4.由一些大小相同的小正方體組成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示在該位置上的小正方體的個數(shù),那么,這個幾何體的左視圖是()A. B. C. D.5.如圖,在四邊形ABCD中,∠A+∠D=α,∠ABC的平分線與∠BCD的平分線交于點P,則∠P=()A.90°-α B.90°+α C. D.360°-α6.已知點,為是反比例函數(shù)上一點,當時,m的取值范圍是()A. B. C. D.7.下面說法正確的個數(shù)有()①如果三角形三個內角的比是1∶2∶3,那么這個三角形是直角三角形;②如果三角形的一個外角等于與它相鄰的一個內角,則這么三角形是直角三角形;③如果一個三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形;④如果∠A=∠B=12⑤若三角形的一個內角等于另兩個內角之差,那么這個三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,則此三角形是直角三角形.A.3個B.4個C.5個D.6個8.下列圖形中,主視圖為①的是()A. B. C. D.9.如圖,在平面直角坐標系中,以A(-1,0),B(2,0),C(0,1)為頂點構造平行四邊形,下列各點中不能作為平行四邊形頂點坐標的是()A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)10.蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元11.若圓錐的軸截面為等邊三角形,則稱此圓錐為正圓錐,則正圓錐側面展開圖的圓心角是()A.90°B.120°C.150°D.180°12.下列計算結果等于0的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.定義一種新運算:x*y=,如2*1==3,則(4*2)*(﹣1)=_____.14.________.15.如圖,⊙O是△ABC的外接圓,∠AOB=70°,AB=AC,則∠ABC=__.

16.如圖,在矩形ABCD中,AB=3,BC=5,在CD上任取一點E,連接BE,將△BCE沿BE折疊,使點C恰好落在AD邊上的點F處,則CE的長為_____.17.如圖,在正方形網(wǎng)格中,線段A′B′可以看作是線段AB經(jīng)過若干次圖形的變化(平移、旋轉、軸對稱)得到的,寫出一種由線段AB得到線段A′B′的過程______18.如圖,、分別為△ABC的邊、延長線上的點,且DE∥BC.如果,CE=16,那么AE的長為_______三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:﹣1,其中a=2sin60°﹣tan45°,b=1.20.(6分)如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點G,過點A作AE∥DB交CB的延長線于點E,過點B作BF∥CA交DA的延長線于點F,AE,BF相交于點H.圖中有若干對三角形是全等的,請你任選一對進行證明;(不添加任何輔助線)證明:四邊形AHBG是菱形;若使四邊形AHBG是正方形,還需在Rt△ABC的邊長之間再添加一個什么條件?請你寫出這個條件.(不必證明)21.(6分)如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.(1)求函數(shù)y=kx+b和y=的表達式;(2)已知點C(0,8),試在該一次函數(shù)圖象上確定一點M,使得MB=MC,求此時點M的坐標.22.(8分)春節(jié)期間,收發(fā)微信紅包已經(jīng)成為各類人群進行交流聯(lián)系、增強感情的一部分,小王在2017年春節(jié)共收到紅包400元,2019年春節(jié)共收到紅包484元,求小王在這兩年春節(jié)收到紅包的年平均增長率.23.(8分)如圖,AC是⊙O的直徑,PA切⊙O于點A,點B是⊙O上的一點,且∠BAC=30°,∠APB=60°.(1)求證:PB是⊙O的切線;(2)若⊙O的半徑為2,求弦AB及PA,PB的長.24.(10分)我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、4、5;三個連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;事實上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).另外利用一些構成勾股數(shù)的公式也可以寫出許多勾股數(shù),畢達哥拉斯學派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請證明滿足以上公式的a、b、c的數(shù)是一組勾股數(shù).然而,世界上第一次給出的勾股數(shù)公式,收集在我國古代的著名數(shù)學著作《九章算術》中,書中提到:當a=(m2﹣n2),b=mn,c=(m2+n2)(m、n為正整數(shù),m>n時,a、b、c構成一組勾股數(shù);利用上述結論,解決如下問題:已知某直角三角形的邊長滿足上述勾股數(shù),其中一邊長為37,且n=5,求該直角三角形另兩邊的長.25.(10分)現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計,在整個過程中,每棵樹苗的種植成本如圖所示.設種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.求y與x之間的函數(shù)關系式;設種植的總成本為w元,①求w與x之間的函數(shù)關系式;②若種植的總成本為5600元,從植樹工人中隨機采訪一名工人,求采訪到種植C種樹苗工人的概率.26.(12分)如圖,在一條河的北岸有兩個目標M、N,現(xiàn)在位于它的對岸設定兩個觀測點A、B.已知AB∥MN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.(1)求點M到AB的距離;(結果保留根號)(2)在B點又測得∠NBA=53°,求MN的長.(結果精確到1米)(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)27.(12分)某同學報名參加學校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠,跳高(分別用T1、T2表示).該同學從5個項目中任選一個,恰好是田賽項目的概率P為;該同學從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1,利用列表法或樹狀圖加以說明;該同學從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2為.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

直接利用完全平方公式以及合并同類項法則、積的乘方運算法則分別化簡得出答案.【詳解】A.

(a+b)2=a2+b2+2ab,故此選項錯誤;B.

3a+4a=7a,故此選項錯誤;C.

(ab)3=a3b3,故此選項錯誤;D.

a2a5=a7,正確。故選:D.【點睛】本題考查了冪的乘方與積的乘方,合并同類項,同底數(shù)冪的乘法,完全平方公式,解題的關鍵是掌握它們的概念進行求解.2、B【解析】試題解析:從正面看是三個矩形,中間矩形的左右兩邊是虛線,故選B.3、C【解析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.4、A【解析】從左面看,得到左邊2個正方形,中間3個正方形,右邊1個正方形.故選A.5、C【解析】試題分析:∵四邊形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分別為∠ABC、∠BCD的平分線,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,則∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故選C.考點:1.多邊形內角與外角2.三角形內角和定理.6、A【解析】

直接把n的值代入求出m的取值范圍.【詳解】解:∵點P(m,n),為是反比例函數(shù)y=-圖象上一點,∴當-1≤n<-1時,∴n=-1時,m=1,n=-1時,m=1,則m的取值范圍是:1≤m<1.故選A.【點睛】此題主要考查了反比例函數(shù)圖象上點的坐標性質,正確把n的值代入是解題關鍵.7、C【解析】試題分析:①∵三角形三個內角的比是1:2:3,∴設三角形的三個內角分別為x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小題正確;②∵三角形的一個外角與它相鄰的一個內角的和是180°,∴若三角形的一個外角等于與它相鄰的一個內角,則此三角形是直角三角形,故本小題正確;③∵直角三角形的三條高的交點恰好是三角形的一個頂點,∴若三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形,故本小題正確;④∵∠A=∠B=12∴設∠A=∠B=x,則∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小題正確;⑤∵三角形的一個外角等于與它不相鄰的兩內角之和,三角形的一個內角等于另兩個內角之差,∴三角形一個內角也等于另外兩個內角的和,∴這個三角形中有一個內角和它相鄰的外角是相等的,且外角與它相鄰的內角互補,∴有一個內角一定是90°,故這個三角形是直角三角形,故本小題正確;⑥∵三角形的一個外角等于與它不相鄰的兩內角之和,又一個內角也等于另外兩個內角的和,由此可知這個三角形中有一個內角和它相鄰的外角是相等的,且外角與它相鄰的內角互補,∴有一個內角一定是90°,故這個三角形是直角三角形,故本小題正確.故選D.考點:1.三角形內角和定理;2.三角形的外角性質.8、B【解析】分析:主視圖是從物體的正面看得到的圖形,分別寫出每個選項中的主視圖,即可得到答案.詳解:A、主視圖是等腰梯形,故此選項錯誤;B、主視圖是長方形,故此選項正確;C、主視圖是等腰梯形,故此選項錯誤;D、主視圖是三角形,故此選項錯誤;故選B.點睛:此題主要考查了簡單幾何體的主視圖,關鍵是掌握主視圖所看的位置.9、B【解析】

作出圖形,結合圖形進行分析可得.【詳解】如圖所示:①以AC為對角線,可以畫出?AFCB,F(xiàn)(-3,1);②以AB為對角線,可以畫出?ACBE,E(1,-1);③以BC為對角線,可以畫出?ACDB,D(3,1),故選B.10、C【解析】

用單價乘數(shù)量得出買2千克蘋果和3千克香蕉的總價,再進一步相加即可.【詳解】買單價為a元的蘋果2千克用去2a元,買單價為b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故選C.【點睛】本題主要考查列代數(shù)式,總價=單價乘數(shù)量.11、D【解析】試題分析:設正圓錐的底面半徑是r,則母線長是2r,底面周長是2πr,設正圓錐的側面展開圖的圓心角是n°,則2r·πr180考點:圓錐的計算.12、A【解析】

各項計算得到結果,即可作出判斷.【詳解】解:A、原式=0,符合題意;

B、原式=-1+(-1)=-2,不符合題意;

C、原式=-1,不符合題意;

D、原式=-1,不符合題意,

故選:A.【點睛】本題考查了有理數(shù)的運算,熟練掌握運算法則是解本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-1【解析】

利用題中的新定義計算即可求出值.【詳解】解:根據(jù)題中的新定義得:原式=*(﹣1)=3*(﹣1)==﹣1.故答案為﹣1.【點睛】本題考查了有理數(shù)的混合運算,熟練掌握運算法則是解答本題的關鍵.14、1【解析】

先將二次根式化為最簡,然后再進行二次根式的乘法運算即可.【詳解】解:原式=2×=1.故答案為1.【點睛】本題考查了二次根式的乘法運算,屬于基礎題,掌握運算法則是關鍵.15、35°【解析】試題分析:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案為35°.考點:圓周角定理.16、【解析】

設CE=x,由矩形的性質得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折疊的性質得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的長度,進而求出DF的長度;然后在Rt△DEF根據(jù)勾股定理列出關于x的方程即可解決問題.【詳解】設CE=x.∵四邊形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵將△BCE沿BE折疊,使點C恰好落在AD邊上的點F處,∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中,由勾股定理得:AF2=52-32=16,∴AF=4,DF=5-4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案為.17、將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度【解析】

根據(jù)圖形的旋轉和平移性質即可解題.【詳解】解:將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度即可得到A′B′、【點睛】本題考查了旋轉和平移,屬于簡單題,熟悉旋轉和平移的概念是解題關鍵.18、1【解析】

根據(jù)DE∥BC,得到,再代入AC=11-AE,則可求AE長.【詳解】∵DE∥BC,∴.∵,CE=11,∴,解得AE=1.故答案為1.【點睛】本題主要考查相似三角形的判定和性質,正確寫出比例式是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、【解析】

對待求式的分子、分母進行因式分解,并將除法化為乘法可得×-1,通過約分即可得到化簡結果;先利用特殊角的三角函數(shù)值求出a的值,再將a、b的值代入化簡結果中計算即可解答本題.【詳解】原式=×-1=-1==,當a═2sin60°﹣tan45°=2×﹣1=﹣1,b=1時,原式=.【點睛】本題考查了分式的化簡求值,解題的關鍵是熟練的掌握分式的化簡求值運算法則.20、(1)詳見解析;(2)詳見解析;(3)需要添加的條件是AB=BC.【解析】試題分析:(1)可根據(jù)已知條件,或者圖形的對稱性合理選擇全等三角形,如△ABC≌△BAD,利用SAS可證明.(2)由已知可得四邊形AHBG是平行四邊形,由(1)可知∠ABD=∠BAC,得到△GAB為等腰三角形,?AHBG的兩鄰邊相等,從而得到平行四邊形AHBG是菱形.試題解析:(1)解:△ABC≌△BAD.證明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,∴△ABC≌△BAD(SAS).(2)證明:∵AH∥GB,BH∥GA,∴四邊形AHBG是平行四邊形.∵△ABC≌△BAD,∴∠ABD=∠BAC.∴GA=GB.∴平行四邊形AHBG是菱形.(3)需要添加的條件是AB=BC.點睛:本題考查全等三角形,四邊形等幾何知識,考查幾何論證和思維能力,第(3)小題是開放題,答案不唯一.21、(1),y=2x﹣1;(2).【解析】

(1)利用待定系數(shù)法即可解答;

(2)作MD⊥y軸,交y軸于點D,設點M的坐標為(x,2x-1),根據(jù)MB=MC,得到CD=BD,再列方程可求得x的值,得到點M的坐標【詳解】解:(1)把點A(4,3)代入函數(shù)得:a=3×4=12,∴.∵A(4,3)∴OA=1,∵OA=OB,∴OB=1,∴點B的坐標為(0,﹣1)把B(0,﹣1),A(4,3)代入y=kx+b得:∴y=2x﹣1.(2)作MD⊥y軸于點D.∵點M在一次函數(shù)y=2x﹣1上,∴設點M的坐標為(x,2x﹣1)則點D(0,2x-1)∵MB=MC,∴CD=BD∴8-(2x-1)=2x-1+1解得:x=∴2x﹣1=,∴點M的坐標為.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的交點,解決本題的關鍵是利用待定系數(shù)法求解析式.22、小王在這兩年春節(jié)收到的年平均增長率是10【解析】

增長后的量=增長前的量×(1+增長率),2018年收到微信紅包金額400(1+x)元,在2018年的基礎上再增長x,就是2019年收到微信紅包金額400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.【詳解】解:設小王在這兩年春節(jié)收到的紅包的年平均增長率是x.依題意得:400解得x1答:小王在這兩年春節(jié)收到的年平均增長率是10【點睛】本題考查了一元二次方程的應用.對于增長率問題,增長前的量×(1+年平均增長率)年數(shù)=增長后的量.23、(1)見解析;(2)2【解析】試題分析:(1)連接OB,證PB⊥OB.根據(jù)四邊形的內角和為360°,結合已知條件可得∠OBP=90°得證;(2)連接OP,根據(jù)切線長定理得直角三角形,根據(jù)含30度角的直角三角形的性質即可求得結果.(1)連接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°.∵四邊形的內角和為360°,∴∠OBP=360°-90°-60°-20°=90°.∴OB⊥PB.又∵點B是⊙O上的一點,∴PB是⊙O的切線.(2)連接OP,∵PA、PB是⊙O的切線,∴PA=PB,∠OPA=∠OPB=,∠APB=30°.在Rt△OAP中,∠OAP=90°,∠OPA=30°,∴OP=2OA=2×2=1.∴PA=OP2-OA2=2∵PA=PB,∠APB=60°,∴PA=PB=AB=2.考點:此題考查了切線的判定、切線長定理、含30度角的直角三角形的性質點評:要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.24、(1)證明見解析;(2)當n=5時,一邊長為37的直角三角形另兩邊的長分別為12,1.【解析】

(1)根據(jù)題意只需要證明a2+b2=c2,即可解答(2)根據(jù)題意將n=5代入得到a=(m2﹣52),b=5m,c=(m2+25),再將直角三角形的一邊長為37,分別分三種情況代入a=(m2﹣52),b=5m,c=(m2+25),即可解答【詳解】(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n為正整數(shù),∴a、b、c是一組勾股數(shù);(2)解:∵n=5∴a=(m2﹣52),b=5m,c=(m2+25),∵直角三角形的一邊長為37,∴分三種情況討論,①當a=37時,(m2﹣52)=37,解得m=±3(不合題意,舍去)②當y=37時,5m=37,解得m=(不合題意舍去);③當z=37時,37=(m2+n2),解得m=±7,∵m>n>0,m、n是互質的奇數(shù),∴m=7,把m=7代入①②得,x=12,y=1.綜上所述:當n=5時,一邊長為37的直角三角形另兩邊的長分別為12,1.【點睛】此題考查了勾股數(shù)和勾股定理,熟練掌握勾股定理是解題關鍵25、(1);(2)①;②【解析】

(1)先求出種植C種樹苗的人數(shù),根據(jù)現(xiàn)種植A、B、C三種樹苗一共480棵,可以列出等量關系,解出y與x之間的關系;(2)①分別求出種植A,B,C三種樹苗的成本,然后相加即可;②求出種植C種樹苗工人的人數(shù),然后用種植C種樹苗工人的人數(shù)÷總人數(shù)即可求出概率.【詳解】解:(1)設種植A種樹苗的工人為x名,種植B種樹苗的工人為y名,則種植C種樹苗的人數(shù)為(80-x-y)人,根據(jù)題意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,②種植的總成本為5600元時,w=-16x+576

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論