版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年貴州都勻中考數(shù)學五模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.下列四個圖形中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.2.將三粒均勻的分別標有,,,,,的正六面體骰子同時擲出,朝上一面上的數(shù)字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.3.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()
A.30 B.27 C.14 D.324.某公園有A、B、C、D四個入口,每個游客都是隨機從一個入口進入公園,則甲、乙兩位游客恰好從同一個入口進入公園的概率是()A. B. C. D.5.如圖,在矩形ABCD中,AB=2a,AD=a,矩形邊上一動點P沿A→B→C→D的路徑移動.設點P經過的路徑長為x,PD2=y,則下列能大致反映y與x的函數(shù)關系的圖象是()A. B.C. D.6.如圖,任意轉動正六邊形轉盤一次,當轉盤停止轉動時,指針指向大于3的數(shù)的概率是()A. B. C. D.7.從1、2、3、4、5、6這六個數(shù)中隨機取出一個數(shù),取出的數(shù)是3的倍數(shù)的概率是()A. B. C. D.8.在平面直角坐標系中,點(-1,-2)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.圖(1)是一個長為2m,寬為2n(m>n)的長方形,用剪刀沿圖中虛線(對稱軸)剪開,把它分成四塊形狀和大小都一樣的小長方形,然后按圖(2)那樣拼成一個正方形,則中間空的部分的面積是()A.2mn B.(m+n)2 C.(m-n)2 D.m2-n210.拋物線的頂點坐標是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)二、填空題(本大題共6個小題,每小題3分,共18分)11.比較大?。?_________(填<,>或=).12.如圖,已知拋物線和x軸交于兩點A、B,和y軸交于點C,已知A、B兩點的橫坐標分別為﹣1,4,△ABC是直角三角形,∠ACB=90°,則此拋物線頂點的坐標為_____.13.如圖,△ABC內接于⊙O,DA、DC分別切⊙O于A、C兩點,∠ABC=114°,則∠ADC的度數(shù)為_______°.14.用一個半徑為10cm半圓紙片圍成一個圓錐的側面(接縫忽略不計),則該圓錐的高為.15.如圖,一個裝有進水管和出水管的容器,從某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,接著關閉進水管直到容器內的水放完.假設每分鐘的進水量和出水量是兩個常數(shù),容器內的水量y(單位:升)與時間x(單位:分)之間的部分關系.那么,從關閉進水管起分鐘該容器內的水恰好放完.16.如圖,點D在的邊上,已知點E、點F分別為和的重心,如果,那么兩個三角形重心之間的距離的長等于________.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經過點A,EF與AC交于M點.(1)求證:△ABE∽△ECM;(2)探究:在△DEF運動過程中,重疊部分能否構成等腰三角形?若能,求出BE的長;若不能,請說明理由;(3)當線段AM最短時,求重疊部分的面積.18.(8分)計算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷219.(8分)如圖,在平面直角坐標系中,已知△AOB是等邊三角形,點A的坐標是(0,4),點B在一象限,點P(t,0)是x軸上的一個動點,連接AP,并把△AOP繞著點A按逆時針方向旋轉,使邊AO與AB重合,連接OD,PD,得△OPD。(1)當t=時,求DP的長(2)在點P運動過程中,依照條件所形成的△OPD面積為S①當t>0時,求S與t之間的函數(shù)關系式②當t≤0時,要使s=,請直接寫出所有符合條件的點P的坐標.20.(8分)武漢二中廣雅中學為了進一步改進本校九年級數(shù)學教學,提高學生學習數(shù)學的興趣.校教務處在九年級所有班級中,每班隨機抽取了6名學生,并對他們的數(shù)學學習情況進行了問卷調查:我們從所調查的題目中,特別把學生對數(shù)學學習喜歡程度的回答(喜歡程度分為:“非常喜歡”、“比較喜歡”、“不太喜歡”、“很不喜歡”,針對這個題目,問卷時要求每位被調查的學生必須從中選一項且只能選一項)結果進行了統(tǒng)計.現(xiàn)將統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據以上提供的信息,解答下列問題:(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學生對數(shù)學學習喜歡程度的眾數(shù)是,圖②中所在扇形對應的圓心角是;(3)若該校九年級共有960名學生,請你估算該年級學生中對數(shù)學學習“不太喜歡”的有多少人?21.(8分)校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.22.(10分)圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.(1)如圖1,點P在小正方形的頂點上,在圖1中作出點P關于直線AC的對稱點Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上.23.(12分)某校七年級(1)班班主任對本班學生進行了“我最喜歡的課外活動”的調查,并將調查結果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據調查結果發(fā)現(xiàn)該班每個學生都進行了等級且只登記了一種自己最喜歡的課外活動.班主任根據調查情況把學生都進行了歸類,并制作了如下兩幅統(tǒng)計圖,請你結合圖中所給信息解答下列問題:七年級(1)班學生總人數(shù)為_______人,扇形統(tǒng)計圖中D類所對應扇形的圓心角為_____度,請補全條形統(tǒng)計圖;學校將舉行書法和繪畫比賽,每班需派兩名學生參加,A類4名學生中有兩名學生擅長書法,另兩名擅長繪畫.班主任現(xiàn)從A類4名學生中隨機抽取兩名學生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學生恰好是一名擅長書法,另一名擅長繪畫的概率.24.如圖,菱形ABCD的邊長為20cm,∠ABC=120°,對角線AC,BD相交于點O,動點P從點A出發(fā),以4cm/s的速度,沿A→B的路線向點B運動;過點P作PQ∥BD,與AC相交于點Q,設運動時間為t秒,0<t<1.(1)設四邊形PQCB的面積為S,求S與t的關系式;(2)若點Q關于O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N,當t為何值時,點P、M、N在一直線上?(3)直線PN與AC相交于H點,連接PM,NM,是否存在某一時刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;D、是軸對稱圖形,也是中心對稱圖形,故此選項正確.故選D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.2、C【解析】
三粒均勻的正六面體骰子同時擲出共出現(xiàn)216種情況,而邊長能構成直角三角形的數(shù)字為3、4、5,含這三個數(shù)字的情況有6種,故由概率公式計算即可.【詳解】解:因為將三粒均勻的分別標有1,2,3,4,5,6的正六面體骰子同時擲出,按出現(xiàn)數(shù)字的不同共=216種情況,其中數(shù)字分別為3,4,5,是直角三角形三邊長時,有6種情況,所以其概率為,故選C.【點睛】本題考查的是概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.3、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點睛】本題考查了平行四邊形的性質,相似三角形的判定與性質等,熟記相似三角形的面積等于相似比的平方是解題的關鍵.4、B【解析】
畫樹狀圖列出所有等可能結果,從中確定出甲、乙兩位游客恰好從同一個入口進入公園的結果數(shù),再利用概率公式計算可得.【詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結果,其中甲、乙兩位游客恰好從同一個入口進入公園的結果有4種,所以甲、乙兩位游客恰好從同一個入口進入公園的概率為=,故選B.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式求事件A或B的概率.5、D【解析】解:(1)當0≤t≤2a時,∵,AP=x,∴;(2)當2a<t≤3a時,CP=2a+a﹣x=3a﹣x,∵,∴=;(3)當3a<t≤5a時,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;綜上,可得,∴能大致反映y與x的函數(shù)關系的圖象是選項D中的圖象.故選D.6、D【解析】分析:根據概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.詳解:∵共6個數(shù),大于3的有3個,∴P(大于3)=.故選D.點睛:本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.7、B【解析】考點:概率公式.專題:計算題.分析:根據概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.解答:解:從1、2、3、4、5、6這六個數(shù)中隨機取出一個數(shù),共有6種情況,取出的數(shù)是3的倍數(shù)的可能有3和6兩種,故概率為2/6="1/"3.故選B.點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)="m"/n.8、C【解析】:∵點的橫縱坐標均為負數(shù),∴點(-1,-2)所在的象限是第三象限,故選C9、C【解析】
解:由題意可得,正方形的邊長為(m+n),故正方形的面積為(m+n)1.又∵原矩形的面積為4mn,∴中間空的部分的面積=(m+n)1-4mn=(m-n)1.故選C.10、A【解析】
已知解析式為頂點式,可直接根據頂點式的坐標特點,求頂點坐標.【詳解】解:y=(x-2)2+3是拋物線的頂點式方程,根據頂點式的坐標特點可知,頂點坐標為(2,3).故選A.【點睛】此題主要考查了二次函數(shù)的性質,關鍵是熟記:頂點式y(tǒng)=a(x-h)2+k,頂點坐標是(h,k),對稱軸是x=h.二、填空題(本大題共6個小題,每小題3分,共18分)11、<【解析】【分析】根據實數(shù)大小比較的方法進行比較即可得答案.【詳解】∵32=9,9<10,∴3<,故答案為:<.【點睛】本題考查了實數(shù)大小的比較,熟練掌握實數(shù)大小比較的方法是解題的關鍵.12、(,)【解析】
連接AC,根據題意易證△AOC∽△COB,則,求得OC=2,即點C的坐標為(0,2),可設拋物線解析式為y=a(x+1)(x﹣4),然后將C點坐標代入求解,最后將解析式化為頂點式即可.【詳解】解:連接AC,∵A、B兩點的橫坐標分別為﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,即=,解得OC=2,∴點C的坐標為(0,2),∵A、B兩點的橫坐標分別為﹣1,4,∴設拋物線解析式為y=a(x+1)(x﹣4),把點C的坐標代入得,a(0+1)(0﹣4)=2,解得a=﹣,∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣)2+,∴此拋物線頂點的坐標為(,).故答案為:(,).【點睛】本題主要考查相似三角形的判定與性質,拋物線的頂點式,解此題的關鍵在于熟練掌握其知識點,利用相似三角形的性質求得關鍵點的坐標.13、48°【解析】
如圖,在⊙O上取一點K,連接AK、KC、OA、OC,由圓的內接四邊形的性質可求出∠AKC的度數(shù),利用圓周角定理可求出∠AOC的度數(shù),由切線性質可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.【詳解】如圖,在⊙O上取一點K,連接AK、KC、OA、OC.∵四邊形AKCB內接于圓,∴∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分別切⊙O于A、C兩點,∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案為48°.【點睛】本題考查圓內接四邊形的性質、周角定理及切線性質,圓內接四邊形的對角互補;在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;圓的切線垂直于過切點的直徑;熟練掌握相關知識是解題關鍵.14、53【解析】試題分析:根據圖形可知圓錐的側面展開圖的弧長為2π×10÷2=10π(cm),因此圓錐的底面半徑為10π÷2π=5(cm),因此圓錐的高為:102-5考點:圓錐的計算15、8。【解析】根據函數(shù)圖象求出進水管的進水量和出水管的出水量,由工程問題的數(shù)量關系就可以求出結論:由函數(shù)圖象得:進水管每分鐘的進水量為:20÷4=5升。設出水管每分鐘的出水量為a升,由函數(shù)圖象,得,解得:?!嚓P閉進水管后出水管放完水的時間為:(分鐘)。16、4【解析】
連接并延長交于G,連接并延長交于H,根據三角形的重心的概念可得,,,,即可求出GH的長,根據對應邊成比例,夾角相等可得,根據相似三角形的性質即可得答案.【詳解】如圖,連接并延長交于G,連接并延長交于H,∵點E、F分別是和的重心,∴,,,,∵,∴,∵,,∴,∵,∴,∴,∴,故答案為:4【點睛】本題考查了三角形重心的概念和性質及相似三角形的判定與性質,三角形的重心是三角形中線的交點,三角形的重心到頂點的距離等于到對邊中點的距離的2倍.三、解答題(共8題,共72分)17、(1)證明見解析;(2)能;BE=1或;(3)【解析】
(1)證明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;當AE=EM時,則△ABE≌△ECM,∴CE=AB=5,∴BE=BC?EC=6?5=1,當AM=EM時,則∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6?=;∴BE=1或;(3)解:設BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=,∴AM=5?CM,∴當x=3時,AM最短為,又∵當BE=x=3=BC時,∴點E為BC的中點,∴AE⊥BC,∴AE=,此時,EF⊥AC,∴EM=,S△AEM=.18、【解析】
按照實數(shù)的運算順序進行運算即可.【詳解】解:原式【點睛】本題考查實數(shù)的運算,主要考查零次冪,負整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及立方根,熟練掌握各個知識點是解題的關鍵.19、(1)DP=;(2)①;②.【解析】
(1)先判斷出△ADP是等邊三角形,進而得出DP=AP,即可得出結論;
(2)①先求出GH=2,進而求出DG,再得出DH,即可得出結論;
②分兩種情況,利用三角形的面積建立方程求解即可得出結論.【詳解】解:(1)∵A(0,4),
∴OA=4,
∵P(t,0),
∴OP=t,
∵△ABD是由△AOP旋轉得到,
∴△ABD≌△AOP,
∴AP=AD,∠DAB=∠PAO,
∴∠DAP=∠BAO=60°,
∴△ADP是等邊三角形,
∴DP=AP,
∵,
∴,
∴;(2)①當t>0時,如圖1,BD=OP=t,
過點B,D分別作x軸的垂線,垂足于F,H,過點B作x軸的平行線,分別交y軸于點E,交DH于點G,
∵△OAB為等邊三角形,BE⊥y軸,
∴∠ABP=30°,AP=OP=2,
∵∠ABD=90°,
∴∠DBG=60°,
∴DG=BD?sin60°=,
∵GH=OE=2,
∴,
∴;②當t≤0時,分兩種情況:
∵點D在x軸上時,如圖2在Rt△ABD中,,
(1)當時,如圖3,BD=OP=-t,,∴,
∴,
∴或,
∴或,
(2)當時,如圖4,BD=OP=-t,,
∴,
∴∴或(舍)∴.【點睛】此題是幾何變換綜合題,主要考查了全等三角形的判定和性質,旋轉的性質,三角形的面積公式以及解直角三角形,正確作出輔助線是解決本題的關鍵.20、(1)答案見解析;(2)B,54°;(3)240人.【解析】
(1)根據D程度的人數(shù)和所占抽查總人數(shù)的百分率即可求出抽查總人數(shù),然后利用總人數(shù)減去A、B、D程度的人數(shù)即可求出C程度的人數(shù),然后分別計算出各程度人數(shù)占抽查總人數(shù)的百分率,從而補全統(tǒng)計圖即可;(2)根據眾數(shù)的定義即可得出結論,然后利用360°乘A程度的人數(shù)所占抽查總人數(shù)的百分率即可得出結論;(3)利用960乘C程度的人數(shù)所占抽查總人數(shù)的百分率即可.【詳解】解:(1)被調查的學生總人數(shù)為人,C程度的人數(shù)為人,則的百分比為、的百分比為、的百分比為,補全圖形如下:(2)所抽取學生對數(shù)學學習喜歡程度的眾數(shù)是、圖②中所在扇形對應的圓心角是.故答案為:;;(3)該年級學生中對數(shù)學學習“不太喜歡”的有人答:該年級學生中對數(shù)學學習“不太喜歡”的有240人.【點睛】此題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖,結合條形統(tǒng)計圖和扇形統(tǒng)計圖得出有用信息是解決此題的關鍵.21、(1)長為18米、寬為7米或長為14米、寬為9米;(1)若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.【解析】
(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,再根據矩形面積公式列方程求解即可得到答案.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,再根據矩形面積公式列方程,求得方程無解,即假設不成立.【詳解】(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,根據題意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假設成立,即長為18米、寬為7米或長為14米、寬為9米.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,根據題意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴該方程無解,∴假設不成立,即若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.22、(1)作圖見解析;;(2)作圖見解析.【解析】試題分析:(1)通過數(shù)格子可得到點P關于AC的對稱點,再直接利用勾股定理可得到周長;(2)利用網格結合矩形的性質以及勾股定理可畫出矩形.試題解析:(1)如圖1所示:四邊形AQCP即為所求,它的周長為:;(2)如圖2所示:四邊形ABCD即為所求.考點:1軸對稱;2勾股定理.23、48;105°;2【解析】試題分析:根據B的人數(shù)和百分比求出總人數(shù),根據D的人數(shù)和總人數(shù)的得出D所占的百分比,然后得出圓心角的度數(shù),根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中醫(yī)臨床常見病癥診斷與治療指南
- 五一節(jié)促銷活動策劃方案模板
- 油漆工常見問題解決方案試卷及答案
- 臺階引橋施工方案(3篇)
- 夾渣施工方案(3篇)
- 國慶運營活動策劃方案(3篇)
- 工地托架施工方案(3篇)
- 如何利用大數(shù)據驅動客戶增長
- 海底公路施工方案(3篇)
- 氣派大門施工方案(3篇)
- 安全員(化工安全員)國家職業(yè)標準(2025年版)
- 2025年衛(wèi)健委編制考試題及答案
- 2025年福建省廈門中考模擬預測地理試題
- 涉爆粉塵專項知識培訓課件
- 環(huán)保企業(yè)污水處理標準操作規(guī)程
- 高危孕婦五色管理課件
- 安全總監(jiān)先進個人材料范文
- 病案委員會課件
- GB/T 45816-2025道路車輛汽車空調系統(tǒng)用制冷劑系統(tǒng)安全要求
- 微細粒輝鉬礦高效捕收劑分子設計與浮選性能研究
- GB/T 241-2025金屬材料管液壓試驗方法
評論
0/150
提交評論