版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省萊陽市市級名校2024年中考數學押題卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一次函數與的圖象如圖所示,給出下列結論:①;②;③當時,.其中正確的有()A.0個 B.1個 C.2個 D.3個2.某班要推選學生參加學校的“詩詞達人”比賽,有7名學生報名參加班級選拔賽,他們的選拔賽成績各不相同,現(xiàn)取其中前3名參加學校比賽.小紅要判斷自己能否參加學校比賽,在知道自己成績的情況下,還需要知道這7名學生成績的()A.眾數 B.中位數 C.平均數 D.方差3.如圖,以AD為直徑的半圓O經過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為()A. B. C. D.4.某市2017年國內生產總值(GDP)比2016年增長了12%,由于受到國際金融危機的影響,預計2018比2017年增長7%,若這兩年GDP年平均增長率為%,則%滿足的關系是()A. B.C. D.5.如圖,菱形ABCD中,∠B=60°,AB=4,以AD為直徑的⊙O交CD于點E,則的長為()A. B. C. D.6.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.7.某數學興趣小組開展動手操作活動,設計了如圖所示的三種圖形,現(xiàn)計劃用鐵絲按照圖形制作相應的造型,則所用鐵絲的長度關系是()A.甲種方案所用鐵絲最長 B.乙種方案所用鐵絲最長C.丙種方案所用鐵絲最長 D.三種方案所用鐵絲一樣長:]8.已知點A、B、C是直徑為6cm的⊙O上的點,且AB=3cm,AC=3cm,則∠BAC的度數為()A.15°
B.75°或15°
C.105°或15°
D.75°或105°9.若※是新規(guī)定的某種運算符號,設a※b=b2-a,則-2※x=6中x的值()A.4 B.8 C.2 D.-210.下列四個圖案中,不是軸對稱圖案的是()A. B. C. D.11.估計﹣1的值為()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間12.一元二次方程4x2﹣2x+=0的根的情況是()A.有兩個不相等的實數根 B.有兩個相等的實數根C.沒有實數根 D.無法判斷二、填空題:(本大題共6個小題,每小題4分,共24分.)13.將多項式xy2﹣4xy+4y因式分解:_____.14.如圖,等腰三角形ABC的底邊BC長為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點E、F,若點D為底邊BC的中點,點M為線段EF上一動點,則△BDM的周長的最小值為_____.15.若不等式(a+1)x>a+1的解集是x<1,則a的取值范圍是_________.16.若正六邊形的邊長為2,則此正六邊形的邊心距為______.17.如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當扇形AOB的半徑為2時,陰影部分的面積為__________.18.如圖所示,矩形ABCD的頂點D在反比例函數(x<0)的圖象上,頂點B,C在x軸上,對角線AC的延長線交y軸于點E,連接BE,△BCE的面積是6,則k=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,直線y1=2x+b與坐標軸交于A、B兩點,與雙曲線(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,點B的坐標為(0,﹣2).(1)求直線y1=2x+b及雙曲線(x>0)的表達式;(2)當x>0時,直接寫出不等式的解集;(3)直線x=3交直線y1=2x+b于點E,交雙曲線(x>0)于點F,求△CEF的面積.20.(6分)已知:如圖,E,F(xiàn)是?ABCD的對角線AC上的兩點,BE∥DF.求證:AF=CE.21.(6分)如圖①是一副創(chuàng)意卡通圓規(guī),圖②是其平面示意圖,OA是支撐臂,OB是旋轉臂.使用時,以點A為支撐點,鉛筆芯端點B可繞點A旋轉作出圓.已知OA=OB=10cm.(1)當∠AOB=18°時,求所作圓的半徑(結果精確到0.01cm);(2)保持∠AOB=18°不變,在旋轉臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度(結果精確到0.01cm,參考數據:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科學計算器).22.(8分)計算:4cos30°+|3﹣|﹣()﹣1+(π﹣2018)023.(8分)趙亮同學想利用影長測量學校旗桿的高度,如圖,他在某一時刻立1米長的標桿測得其影長為1.2米,同時旗桿的投影一部分在地面上,另一部分在某一建筑的墻上,分別測得其長度為9.6米和2米,則學校旗桿的高度為________米.24.(10分)如圖,平面直角坐標系xOy中,已知點A(0,3),點B(,0),連接AB,若對于平面內一點C,當△ABC是以AB為腰的等腰三角形時,稱點C是線段AB的“等長點”.(1)在點C1(﹣2,3+2),點C2(0,﹣2),點C3(3+,﹣)中,線段AB的“等長點”是點________;(2)若點D(m,n)是線段AB的“等長點”,且∠DAB=60°,求點D的坐標;(3)若直線y=kx+3k上至少存在一個線段AB的“等長點”,求k的取值范圍.25.(10分)如圖,AB是的直徑,AF是切線,CD是垂直于AB的弦,垂足為點E,過點C作DA的平行線與AF相交于點F,已知,.求AD的長;求證:FC是的切線.26.(12分)某船的載重為260噸,容積為1000m1.現(xiàn)有甲、乙兩種貨物要運,其中甲種貨物每噸體積為8m1,乙種貨物每噸體積為2m1,若要充分利用這艘船的載重與容積,求甲、乙兩種貨物應各裝的噸數(設裝運貨物時無任何空隙).27.(12分)某工廠甲、乙兩車間接到加工一批零件的任務,從開始加工到完成這項任務共用了9天,乙車間在加工2天后停止加工,引入新設備后繼續(xù)加工,直到與甲車間同時完成這項任務為止,設甲、乙車間各自加工零件總數為y(件),與甲車間加工時間x(天),y與x之間的關系如圖(1)所示.由工廠統(tǒng)計數據可知,甲車間與乙車間加工零件總數之差z(件)與甲車間加工時間x(天)的關系如圖(2)所示.(1)甲車間每天加工零件為_____件,圖中d值為_____.(2)求出乙車間在引入新設備后加工零件的數量y與x之間的函數關系式.(3)甲車間加工多長時間時,兩車間加工零件總數為1000件?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
仔細觀察圖象,①k的正負看函數圖象從左向右成何趨勢即可;②a,b看y2=x+a,y1=kx+b與y軸的交點坐標;③看兩函數圖象的交點橫坐標;④以兩條直線的交點為分界,哪個函數圖象在上面,則哪個函數值大.【詳解】①∵y1=kx+b的圖象從左向右呈下降趨勢,
∴k<0正確;
②∵y2=x+a,與y軸的交點在負半軸上,
∴a<0,故②錯誤;
③當x<3時,y1>y2錯誤;
故正確的判斷是①.
故選B.【點睛】本題考查一次函數性質的應用.正確理解一次函數的解析式:y=kx+b(k≠0)y隨x的變化趨勢:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.2、B【解析】
由于總共有7個人,且他們的成績互不相同,第4的成績是中位數,要判斷自己能否參加學校比賽,只需知道中位數即可.【詳解】由于總共有7個人,且他們的成績互不相同,第4的成績是中位數,要判斷自己能否參加學校比賽,故應知道中位數是多少.故選B.【點睛】本題考查了統(tǒng)計的有關知識,掌握平均數、中位數、眾數、方差的意義是解題的關鍵.3、D【解析】
連接BD,BE,BO,EO,先根據B、E是半圓弧的三等分點求出圓心角∠BOD的度數,再利用弧長公式求出半圓的半徑R,再利用圓周角定理求出各邊長,通過轉化將陰影部分的面積轉化為S△ABC﹣S扇形BOE,然后分別求出面積相減即可得出答案.【詳解】解:連接BD,BE,BO,EO,∵B,E是半圓弧的三等分點,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的長為,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面積相等,∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE=故選:D.【點睛】本題主要考查弧長公式,扇形面積公式,圓周角定理等,掌握圓的相關性質是解題的關鍵.4、D【解析】分析:根據增長率為12%,7%,可表示出2017年的國內生產總值,2018年的國內生產總值;求2年的增長率,可用2016年的國內生產總值表示出2018年的國內生產總值,讓2018年的國內生產總值相等即可求得所列方程.詳解:設2016年的國內生產總值為1,∵2017年國內生產總值(GDP)比2016年增長了12%,∴2017年的國內生產總值為1+12%;∵2018年比2017年增長7%,∴2018年的國內生產總值為(1+12%)(1+7%),∵這兩年GDP年平均增長率為x%,∴2018年的國內生產總值也可表示為:,∴可列方程為:(1+12%)(1+7%)=.故選D.點睛:考查了由實際問題列一元二次方程的知識,當必須的量沒有時,應設其為1;注意2018年的國內生產總值是在2017年的國內生產總值的基礎上增加的,需先算出2016年的國內生產總值.5、B【解析】
連接OE,由菱形的性質得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性質和三角形內角和定理求出∠DOE=60°,再由弧長公式即可得出答案.【詳解】解:連接OE,如圖所示:∵四邊形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴的長==;故選B.【點睛】本題考查弧長公式、菱形的性質、等腰三角形的性質等知識;熟練掌握菱形的性質,求出∠DOE的度數是解決問題的關鍵.6、C【解析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.7、D【解析】試題分析:解:由圖形可得出:甲所用鐵絲的長度為:2a+2b,乙所用鐵絲的長度為:2a+2b,丙所用鐵絲的長度為:2a+2b,故三種方案所用鐵絲一樣長.故選D.考點:生活中的平移現(xiàn)象8、C【解析】解:如圖1.∵AD為直徑,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,則∠BAC=105°;如圖2,.∵AD為直徑,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,則∠BAC=15°.故選C.點睛:本題考查的是圓周角定理和銳角三角函數的知識,掌握直徑所對的圓周角是直徑和熟記特殊角的三角函數值是解題的關鍵,注意分情況討論思想的運用.9、C【解析】解:由題意得:,∴,∴x=±1.故選C.10、B【解析】
根據軸對稱圖形的定義逐項識別即可,一個圖形的一部分,以某條直線為對稱軸,經過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【詳解】A、是軸對稱圖形,故本選項錯誤;B、不是軸對稱圖形,故本選項正確;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選:B.【點睛】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關鍵.11、C【解析】分析:根據被開方數越大算術平方根越大,可得答案.詳解:∵<<,∴1<<5,∴3<﹣1<1.故選C.點睛:本題考查了估算無理數的大小,利用被開方數越大算術平方根越大得出1<<5是解題的關鍵,又利用了不等式的性質.12、B【解析】
試題解析:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有兩個相等的實數根.故選B.考點:根的判別式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、y(xy﹣4x+4)【解析】
直接提公因式y(tǒng)即可解答.【詳解】xy2﹣4xy+4y=y(xy﹣4x+4).故答案為:y(xy﹣4x+4).【點睛】本題考查了因式分解——提公因式法,確定多項式xy2﹣4xy+4y的公因式為y是解決問題的關鍵.14、2【解析】
連接AD交EF與點M′,連結AM,由線段垂直平分線的性質可知AM=MB,則BM+DM=AM+DM,故此當A、M、D在一條直線上時,MB+DM有最小值,然后依據要三角形三線合一的性質可證明AD為△ABC底邊上的高線,依據三角形的面積為12可求得AD的長.【詳解】解:連接AD交EF與點M′,連結AM.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得AD=1,∵EF是線段AB的垂直平分線,∴AM=BM.∴BM+MD=MD+AM.∴當點M位于點M′處時,MB+MD有最小值,最小值1.∴△BDM的周長的最小值為DB+AD=2+1=2.【點睛】本題考查三角形的周長最值問題,結合等腰三角形的性質、垂直平分線的性質以及中點的相關屬性進行分析.15、a<﹣1【解析】不等式(a+1)x>a+1兩邊都除以a+1,得其解集為x<1,∴a+1<0,解得:a<?1,故答案為a<?1.點睛:本題主要考查解一元一次不等式,解答此題的關鍵是掌握不等式的性質,再不等式兩邊同加或同減一個數或式子,不等號的方向不變,在不等式的兩邊同乘或同除一個正數或式子,不等號的方向不變,在不等式的兩邊同乘或同除一個負數或式子,不等號的方向改變.16、.【解析】
連接OA、OB,根據正六邊形的性質求出∠AOB,得出等邊三角形OAB,求出OA、AM的長,根據勾股定理求出即可.【詳解】連接OA、OB、OC、OD、OE、OF,∵正六邊形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等邊三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.17、π﹣1【解析】
根據勾股定理可求OC的長,根據題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.【詳解】連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,∴∠COD=45°,∴OC=CD=1,∴CD=OD=1,∴陰影部分的面積=扇形BOC的面積﹣三角形ODC的面積=﹣×11=π﹣1.故答案為π﹣1.【點睛】本題考查正方形的性質和扇形面積的計算,解題關鍵是得到扇形半徑的長度.18、-1【解析】
先設D(a,b),得出CO=-a,CD=AB=b,k=ab,再根據△BCE的面積是6,得出BC×OE=1,最后根據AB∥OE,得出,即BC?EO=AB?CO,求得ab的值即可.【詳解】設D(a,b),則CO=-a,CD=AB=b,∵矩形ABCD的頂點D在反比例函數y=(x<0)的圖象上,∴k=ab,∵△BCE的面積是6,∴×BC×OE=6,即BC×OE=1,∵AB∥OE,∴,即BC?EO=AB?CO,∴1=b×(-a),即ab=-1,∴k=-1,故答案為-1.【點睛】本題主要考查了反比例函數系數k的幾何意義,矩形的性質以及平行線分線段成比例定理的綜合應用,能很好地考核學生分析問題,解決問題的能力.解題的關鍵是將△BCE的面積與點D的坐標聯(lián)系在一起,體現(xiàn)了數形結合的思想方法.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)直線解析式為y1=2x﹣2,雙曲線的表達式為y2=(x>0);(2)0<x<2;(3)【解析】
(1)將點B的代入直線y1=2x+b,可得b,則可以求得直線解析式;令y=0可得A點坐標為(1,0),又因為OA=AD,則D點坐標為(2,0),把x=2代入直線解析式,可得y=2,從而得到點C的坐標為(2,2),在把(2,2)代入雙曲線y2=,可得k=4,則雙曲線的表達式為y2=(x>0).(2)由x的取值范圍,結合圖像可求得答案.(3)把x=3代入y2函數,可得y=;把x=3代入y1函數,可得y=4,從而得到EF,由三角形的面積公式可得S△CEF=.【詳解】解:(1)將點B的坐標(0,﹣2)代入直線y1=2x+b,可得﹣2=b,∴直線解析式為y1=2x﹣2,令y=0,則x=1,∴A(1,0),∵OA=AD,∴D(2,0),把x=2代入y1=2x﹣2,可得y=2,∴點C的坐標為(2,2),把(2,2)代入雙曲線y2=,可得k=2×2=4,∴雙曲線的表達式為y2=(x>0);(2)當x>0時,不等式>2x+b的解集為0<x<2;(3)把x=3代入y2=,可得y=;把x=3代入y1=2x﹣2,可得y=4,∴EF=4﹣=,∴S△CEF=××(3﹣2)=,∴△CEF的面積為.【點睛】本題考察了一次函數和雙曲線例函數的綜合;熟練掌握由點求解析式是解題的關鍵;能夠結合圖形及三角形面積公式是解題的關鍵.20、參見解析.【解析】分析:先證∠ACB=∠CAD,再證出△BEC≌△DFA,從而得出CE=AF.詳解:證明:平行四邊形中,,,.又,,,點睛:本題利用了平行四邊形的性質,全等三角形的判定和性質.21、(1)3.13cm(2)鉛筆芯折斷部分的長度約是0.98cm【解析】試題分析:(1)根據題意作輔助線OC⊥AB于點C,根據OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度數,從而可以求得AB的長;(2)由題意可知,作出的圓與(1)中所作圓的大小相等,則AE=AB,然后作出相應的輔助線,畫出圖形,從而可以求得BE的長,本題得以解決.試題解析:(1)作OC⊥AB于點C,如右圖2所示,由題意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB?sin9°≈2×10×0.1564≈3.13cm,即所作圓的半徑約為3.13cm;(2)作AD⊥OB于點D,作AE=AB,如下圖3所示,∵保持∠AOB=18°不變,在旋轉臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,∴折斷的部分為BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB?sin9°≈2×3.13×0.1564≈0.98cm,即鉛筆芯折斷部分的長度是0.98cm.考點:解直角三角形的應用;探究型.22、1【解析】
直接利用特殊角的三角函數值和負指數冪的性質、零指數冪的性質、二次根式的性質分別化簡得出答案.【詳解】原式=1×+2﹣3﹣2+1=2+2﹣1=1﹣1.【點睛】此題主要考查了實數運算,正確化簡各數是解題關鍵.23、10【解析】試題分析:根據相似的性質可得:1:1.2=x:9.6,則x=8,則旗桿的高度為8+2=10米.考點:相似的應用24、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【解析】
(1)直接利用線段AB的“等長點”的條件判斷;(2)分兩種情況討論,利用對稱性和垂直的性質即可求出m,n;(3)先判斷出直線y=kx+3與圓A,B相切時,如圖2所示,利用相似三角形的性質即可求出結論.【詳解】(1)∵A(0,3),B(,0),∴AB=2,∵點C1(﹣2,3+2),∴AC1==2,∴AC1=AB,∴C1是線段AB的“等長點”,∵點C2(0,﹣2),∴AC2=5,BC2==,∴AC2≠AB,BC2≠AB,∴C2不是線段AB的“等長點”,∵點C3(3+,﹣),∴BC3==2,∴BC3=AB,∴C3是線段AB的“等長點”;故答案為C1,C3;(2)如圖1,在Rt△AOB中,OA=3,OB=,∴AB=2,tan∠OAB==,∴∠OAB=30°,當點D在y軸左側時,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵點D(m,n)是線段AB的“等長點”,∴AD=AB,∴D(﹣,0),∴m=,n=0,當點D在y軸右側時,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵點D(m,n)是線段AB的“等長點”,∴AD=AB=2,∴m=2;∴D(,3)(3)如圖2,∵直線y=kx+3k=k(x+3),∴直線y=kx+3k恒過一點P(﹣3,0),∴在Rt△AOP中,OA=3,OP=3,∴∠APO=30°,∴∠PAO=60°,∴∠BAP=90°,當PF與⊙B相切時交y軸于F,∴PA切⊙B于A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GA 557.1-2005互聯(lián)網上網服務營業(yè)場所信息安全管理代碼 第1部分:營業(yè)場所代碼》專題研究報告
- 中學學生社團活動交流合作制度
- 養(yǎng)老院消防演練制度
- 企業(yè)財務分析與預算管理制度
- 2026湖北省定向清華大學選調生招錄備考題庫附答案
- 2026福建泉州市南安市衛(wèi)生事業(yè)單位赴福建醫(yī)科大學招聘編制內衛(wèi)生類人員64人備考題庫附答案
- 2026福建省面向華東理工大學選調生選拔工作備考題庫附答案
- 2026福建福州第十九中學招聘編外行政人員(勞務派遣)1人備考題庫附答案
- 2026重慶九洲智造科技有限公司招聘研發(fā)工程師10人備考題庫附答案
- 2026遼寧大連理工大學化工學院劉家旭團隊科研助理招聘1人(自聘)參考題庫附答案
- 初中語文新課程標準與解讀課件
- 無人機裝調檢修工培訓計劃及大綱
- 中建通風與空調施工方案
- 高考語言運用題型之長短句變換 學案(含答案)
- 春よ、來い(春天來了)高木綾子演奏長笛曲譜鋼琴伴奏
- ARJ21機型理論知識考試題庫(匯總版)
- 2023年婁底市建設系統(tǒng)事業(yè)單位招聘考試筆試模擬試題及答案解析
- GB/T 4623-2014環(huán)形混凝土電桿
- GB/T 32065.4-2015海洋儀器環(huán)境試驗方法第4部分:高溫試驗
- GB/T 16823.3-2010緊固件扭矩-夾緊力試驗
- 中介服務費承諾書
評論
0/150
提交評論