《6G網(wǎng)絡(luò)AI概念術(shù)語白皮書》(英文)_第1頁
《6G網(wǎng)絡(luò)AI概念術(shù)語白皮書》(英文)_第2頁
《6G網(wǎng)絡(luò)AI概念術(shù)語白皮書》(英文)_第3頁
《6G網(wǎng)絡(luò)AI概念術(shù)語白皮書》(英文)_第4頁
《6G網(wǎng)絡(luò)AI概念術(shù)語白皮書》(英文)_第5頁
已閱讀5頁,還剩45頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1

Abstract

Thenext-generation6Gmobilesystemaimstosupportandimplementintelligentconnectionofeverything,intelligentassociationofservicesandtasks,andinclusiveintelligence.Itwillbecomeapowerfulintelligentinfrastructureplatformthatsupportsandempowersawidevarietyofindustries.Withtheacquisitionofconsumersatalllevelsandthein-depthdevelopmentofdigitalandintelligentapplicationsinvariousindustries,thereisanincreasinglyurgentneedtoprovidenativeAIcapabilitiesandservicesinnew6Gnetworks.Thiswhitepapersystematicallyanalyzesandsummarizesthetechnicalrequirementsandimpacts(intermsofcapability,service,architecture,standardization,etc.)ofnativeAIdesignbasedontherequirementsandtrendsoffuture6Gbusinessforms,newindustryscenariosandusecases,andnewtechnologiestoeffectivelysupportthedesignandimplementationofnativeAI-relatedtechnicalsolutionsfornew6Gnetworks.

Theorganizationsthathaveparticipatedinwritingthiswhitepaperincludebutarenotlimitedto:ZTE,CICTMobile,Huawei,ChinaMobile,ChinaTelecom,ChinaUnicom,ShanghaiTechUniversity,ChongqingUniversityofPostsandTelecommunications,NokiaShanghaiBell,vivo,PurpleMountainLaboratories,AsiaInfo,Ericsson,DalianMaritimeUniversity,andPengChengLaboratory.Manythankstoalltheseorganizationsfortheircontributions.

2

Contents

1Introduction 4

2ApplicationsIntegratingAIand5GMobileSystems 5

2.1StatusQuoofAIfor5G 5

2.2StatusQuoof5GforAI 5

2.3StatusQuoof5GNetworkAI 6

2.4ChallengesinIntegratingAIand5GMobileSystems 10

3MechanismofNativeAIintheNew6GMobileSystem 11

3.1NecessityAnalysis 11

3.2FeasibilityAnalysis 11

3.3GainAnalysis 12

3.4AnalysisofNewFeaturesandNewParadigms 13

4TechnicalRequirementsofNativeAIintheNew6GMobileSystem 15

4.1CapabilityRequirements 15

4.1.1ComputingPowerRequirements 15

4.1.2AlgorithmRequirements 16

4.1.3DataRequirements 17

4.1.4OtherRequirements 17

4.2ServiceRequirements 18

4.2.1ComputingServiceRequirements 18

4.2.2AlgorithmServiceRequirements 19

4.2.3DataServiceRequirements 20

4.2.4OtherServiceRequirements 21

4.3ArchitectureRequirements 22

4.3.1ComputingArchitecture 22

4.3.2AlgorithmArchitecture 25

4.3.3DataArchitecture 26

4.3.4OtherArchitectures 28

5SummaryofTechnicalRequirementsandPrinciples 29

References 30

AcronymsandAbbreviations 31

3

Authors

Contributor

Organization

LiYang,FengXie,HonghuiKang,YanXue,MenghanWang,JiaohongNiu

ZTECorporation

MingAi,XiaoyanDuan,WanfeiSun,MinShu

CICTMobile

ChenghuiPeng,ZheLiu,JunWang,FeiWang

HuaweiTechnologiesCo.,Ltd.

GangLi,ZiruiWen

ChinaMobile

XuXia,MenghanYu,HengWang,WenQi

ChinaTelecom

BingmingHuang,JunLiao

ChinaUnicom

YangYang,LiantaoWu,KaiLi,ChenyuGong,MuleiMa

ShanghaiTechUniversity

ChengchaoLiang,LunTang,RongChai,GuozhongWang

ChongqingUniversityofPostsand

Telecommunications

GangShen,ChenhuiYe,KaibinZhang,

FangfangGu

NokiaShanghaiBell

YannanYuan,BuleSun

vivoMobileCommunicationCo.,Ltd.

LanlanLi,JianjieYou

PurpleMountainLaboratories

YeOuyang,DaWang,YangBai,YanZhao

AsiaInfoTechnologiesCo.,Ltd.

LingSu,DandanHao

Ericsson

TingtingYang,JiahongNing,ZhengqiCui

DalianMaritimeUniversity/PengCheng

Laboratory

1Introduction

4

NativeAIisconsideredtobeoneofthecorearchitecturefeaturesofthefuture6Gmobilesystem[1].WiththerapiddevelopmentofAItechnologiesandapplications,theirscientificconcepts,paradigms/modes,algorithms/models,andmethods/meansneedtobemorecloselyanddeeplyembeddedintothearchitecture,NEs,andfunctionalprocessesofthenew6Gmobilesystem.Inaddition,theyneedtoleveragetheadvantagesofthenew6Gmobilesystemasapowerfulandubiquitoustelecominfrastructureplatformsoastofurthermanifesttheperformance/effectivenessgainsandbenefitsofAI,andcomprehensivelyhelprealizethevisionsoftheintelligentconnectionofeverything,intelligentassociationofservicesandtasks,andinclusiveintelligenceinthe6Gera.ThiswhitepaperbrieflyintroducesthebackgroundandmotivationsofnativeAI,andsystematicallyelaboratesnumeroustechnicalrequirements(intermsoffunction,performance,service,architecture,etc.)involvedinthedesignofnativeAIforthenew6Gmobilesystem,coveringthreebasicAIelements:AIcomputingpower,AIalgorithm,andAIdata.Further,thispaperfurtheranalyzesandsummarizesthecomprehensiveimpactsandrequirementsofnativeAIonthearchitectureandstandardizationofthenew6Gmobilesystembasedonthelatestresearch.

2ApplicationsIntegratingAIand5GMobileSystems

5

AI,especiallymachinelearning(ML)anddeeplearning(DL),wasfirstintegratedwiththe5Gsystem(5GS)accordingto3GPPspecifications.However,AIserviceapplicationsandrelatedcapabilitiesandservices,forexample,howtooptimizeaspecificcommunicationworkingmechanismbasedonnewAIparadigms,werenotfullyconsideredduringthedesign(referredtoasthenativephase)ofthe5GS.The5GSmobilesystemhasshowntendencytowardcloudnative,software-definednetworking(SDN),andservicevirtualization.Forexample,itsupportsServiceBasedArchitecture(SBA)CNandcloud-basedCN.Inaddition,allianceorganizationssuchasO-RANandOpenRANhavebeenactivelypromotingtheopenness,cloudification,andvirtualizationofwirelessnetworks.Nevertheless,theNextGenerationRadioAccessNetwork(NG-RAN)subsystemofthe5GSretainsthetraditional"siloedCT-basedbasestationarchitecture"andrelativelyrigidRANprotocolstackmodelsduetorestrictionsintermsoftechnologymaturity,security,andsystemO&Mcomplexity.WiththegradualpenetrationandprovenbenefitsofAIfunctionsandservices,the5GScanaddthenetworkdataanalyticsfunction(NWDAF)—anewlogicalfunctionnode—andvariousmodule-level"externalplug-in/add-on"AIfunctionstotheCNbasedontheexistingsystemarchitectureandprotocolstacktofurtherenhancesystemperformanceandexternalservicecapabilities.Each"externalplug-in/add-on"AIfunctionalmoduleisdevelopedforspecificknowncommunicationissue,suchasslicequalityassurance,qualityofexperience(QoE)optimization,mobilityprediction,faultlocating,andnetworkplanning,optimization,andO&M.TheseAIfunctionalmodulesareaddedtoimprovetheperformanceofthe5GS,optimizewirelesstransmissionefficiency,andsimplifynetworkmanagementandO&M.

2.1StatusQuoofAIfor5G

ManypracticeshaveproventhatAI,ML,andDLarefeasibleandeffectivemethodsforsolvingmulti-dimensionalcomplexandcomputing-intensiveproblemsintraditionalwirelesscommunication.Currently,AI,ML,andDLhavebeenpreliminarilyappliedandverifiedatmultiplelevelsandinmultiplebusinessdomainsofthe5GS.Prominentexamplesinclude:1)Anintelligentplatformhelpssimplify5GSO&M,optimizefunctionssuchasservicescenarioidentification,networkanomalydetection,andfaultrootcauseanalysis,andincreaseenergysaving.2)Anintelligentmoduleoptimizesthedeploymentofnetworkpoliciesandresourcesandimprovestheaccuracyofparametersettings.3)Intelligentchannelstateinformation(CSI)compressionisusedtoprovidefeedbackonresourceoverheads.4)Intelligentmodulationandcodinghelpimproveairinterfaceresourceutilization.5)Userexperienceisimprovedbyintelligentlyidentifyingandpredictingnetworktrafficdistribution,usertrajectory,anduserbehavior[2].AlltheprecedingexamplescanbecalledAIforNetwork(AI4NET).TheydemonstratethevalueofAIasanadvancedtechnologytoempowerandoptimizethe5GSinspecificaspects.AIalgorithms/modelsinthe5GSareappliedtosolvespecificknowncommunicationissues.Thatis,thesemodelshaveundergonealotofdedicatedofflinetrainingandverification.Althoughtheyonlyhelpmitigateorsolvespecificissues,theyalsoimprovecommunicationserviceperformanceandreducesystemO&Mcoststoacertainextent.Ingeneral,thecurrentAI4NETstillneedsimprovementintermsofsystematicness,thoroughness,globality,andexplainability.TheAIcapabilityextensibility,iterationenhancement,andAImodelgeneralizabilityaregreatlyrestricted.Inaddition,variousAIresourcesandcapabilities(coveringAIcomputingpower,algorithms,anddata)inthecurrent5GSarenotopenorservice-oriented.Mostofthemareusedonlywithinthesystem.

2.2StatusQuoof5GforAI

Currently,variousmobileAIapplications(e.g.,AIrecognition,classification,andprocessingofvoice,images,videos,anddata)areprovidedforendusersinlocalizedorcentralizedcloudAIservicemode(e.g.,thepubliccloudsrepresentedbyAmazonAWS,MicrosoftAzure,GoogleCloud,andAlibabaCloud).Therefore,the5GSactsmoreasanunderlyingdatatransmissionpipe.The5GStransmitsdataflowsrelatedtoAImodeltrainingandAIserviceapplicationsascommonuserservicedata.ThelargeamountsofsampledatarequiredforcloudAImodeltrainingaretransmittedintheformofapplication-layerdatainthe5GSinanE2Emanner.Inaddition,3GPPRelease16hasdefinedtheNWDAFandrelatedinteraction

6

interfacestoimplementintelligentapplicationsinsidethenetworkandempowerAIinternallyandexternally,therebyreducingthedependencyontraditionalcloudAI.AlltheprecedingexamplescanbecalledNetworkforAI(NET4AI),whichreflectsthebenefitsofthe5GStoAIbusinessesandservices.ForNET4AIintelligentapplications,therequirementsonKPIsrelatedtonetworkconnectionperformanceinspecificscenarioshavebeenspecifiedfrom3GPPTS22.261[3].However,intheprecedingNET4AImobileapplicationexamples,alloperationsinupper-layercloudAImodearealmosttransparenttothe5GS,andcross-layerdeepintegrationorcooperationbetweenupper-layerAIapplicationsandlower-layernetworkpipesisnotrealized.Inaddition,thecommunication,sensing,andcomputingresources,capabilities,anddatainthe5GSarenotfullyopentoandutilizedbyintelligentNEssuchastheupper-layercloudAIapplicationserversorNWDAFs,andarenotwelladaptedtoupper-layerAIserviceapplications.Thecomputingpower,algorithm,anddataresourcesownedbyeachlogicalNEnodeinthe5GSarenotfullyscheduledorutilizedbyexternalAIfunctionentities.Mostoftheseresources,suchaslargeamountsofbasebandcomputingpowerandwirelessdatainbasestations,serveonlytraditionalcommunication—ifnotleftidle.Itisexpectedthatthenew6Gmobilesystemwillnativelysupportthecapabilitiesoffullyutilizingthecomputingpower,algorithm,anddataresourcesandcapabilitiesofnew6Gnetworks,maximizingthevalueoftheseresourcestobusinessesandservices,andfurtherexpandingtheprofitabilitysystemofmobileoperators.

2.3StatusQuoof5GNetworkAI

AlthoughAIwasnotnativelyconsideredduring5Gnetworkdesign,5GNetworkAI,thatis,integratingAIand5Gnetworksformutualbenefits,hasbeencontinuouslyexploredandcontinuestoevolve.Standardsorganizationsandforumssuchas3GPP,ITU-T,ETSI,andTMFhaveprogressedintheexplorationof5GNetworkAI.

3GPPhasmadepreliminaryexplorationsinto5GNetworkAI.Thestatusandprogressareasfollows:

In3GPPRelease16,anewlogicalfunctionentity,NWDAF,wasaddedtothenetworkarchitectureofthe5GS,asshowninFigure2-1.Fordetails,see3GPPTS23.288[4].NWDAFsinteractwithotherfunctionentitiesinthe5GC(e.g.,AF,PCF,AMF,andSMF)toprovidemultipletypesofnetworkdataanalysisservices.Theofferedservicesincludereceivingnetworkdataanalysisrequestsfromeachnetworkfunction(NF)entityintheCN,collectingtherequestednetworkdata,leveragingAIalgorithmsfordataanalysisandinference,andreturningthenetworkanalysisresultinformationtotherequestingNFentity.EachNFmonitorstheoperatingstatusesofthe5GSnetworkanddevicesbasedonthenetworkanalysisresultinformationprovidedbyNWDAFs,andperformsclosed-loopcontrolandoptimizationoncommunicationservices.Asof3GPPRelease17,NWDAFscananalyzenetworkserviceexperience,networkperformance,sliceload,NFload,UEmobility/communication/anomalyevents,qualityofservice(QoS)sustainability,anduserdatacongestion.

Figure2-1NWDAF-based5Gnetworkdataanalysisarchitecture(See3GPPTS23.288.)

Thearchitectureandfunctionsof5GSnetworkdataanalysiswereenhancedin3GPPRelease17,including:logicalfunctionsplittingandinteractionwithinanNWDAF,collaborativedatatrainingandmodelsharingamongmultipleNWDAFinstances,andadditionofnewfunctionentitiestoimprovedatacollectionefficiencyandenhancereal-timeperformance.TheNWDAFspecifiedin3GPPRelease17hasthefollowingfeatures:

7

.NWDAFentitydeploymentismoreflexible.Thecentralized,distributed,andhybrid(centralized+distributed)deploymentmodesaresupported.

.MultipleNWDAFentitiescancollaboratewitheachother(e.g.,duringanalysisaggregation,analysistransfer,andAIdata/modelsharing).

.TheNWDAFcanbefurtherdecomposedintomodeltraininglogicfunction(MTLF)andanalyticlogicfunction(AnLF).AnMTLFcanprovideMLmodelsforNWDAFentitiesotherthantheNWDAFtowhichtheMTLFbelongs.

.Thedatacollectioncontrolfunction(DCCF),analyticdatarepositoryfunction(ADRF),andrelateddatacollectionoptimizationprocessesareadded.

.NWDAFentitiescancollectdatafromUEs.

.Edgecomputingserviceexperienceandnetworkperformancecanbeanalyzed.

.UEsandsessionscanbeanalyzedfromthefollowingaspects:sliceloads,discretedistributionofdata/signaling,WLANperformance,userplaneperformance,sessioncongestioncontrol,andredundanttransmission.

3GPPRelease17alsoresearchedonandstandardizedtheintelligenceofthe5GSmanagementplane.Themanagementdataanalytics(MDA)functionwasadded,asshowninFigure2-2.Fordetails,see3GPPTS28.104[5].MDAcollectsdatarelatedtonetworkandserviceeventsandstatus.Suchdataincludesnetworkperformancemeasurementdata,trace/MinimizationofDriveTests(MDT)/QoEreports,alarms,configurationdata,networkanalysisdata,andAFserviceexperiencedata.MDAperformsdataanalysisbasedonspecificAIalgorithms,generatesanalysisresultreports,andperformsnetworkmanagementoperationsbasedontheanalysisresultreports,therebyimplementingautomaticandintelligentnetworkmanagementandO&M.

Figure2-2MDAfunctionandserviceframework(See3GPPTS28.104.)

3GPPRelease17isalsoresearchingonRANintelligence.Fordetails,see3GPPTR37.817[6].Thepotentialapplicationscenariosincludenetworkenergysaving,loadbalancing,andUEmobilitymanagement.

8

3GPPRelease18continuestheresearchontheperformancerequirementsofAI/MLmodeldatatransmissioninthe5GS.Fordetails,see3GPPTS22.261[3].The5GSprovidesQoSguaranteeforAI/MLmodeldatatransmissionbasedonAI/MLserviceorapplicationrequirements.The5GScanalsomonitorthetransmissionstatus(e.g.,transmissionrate,latency,andreliability)ofAI/MLmodeldataandreportthestatustoAIapplicationserverssothattheserversadjustAIapplication-layerparametersaccordingly.

Currently,3GPPRelease18isstillintheinitiationphasein3GPPSA2.Itconsidersnetworkintelligencefromthefollowingtwoaspects:

.AI4NET:focuseson5GCNE-relatedanalysisandresearchonpotentialarchitectureenhancements,newscenarios,etc.TheresearchonAI4NETincludeswhetherandhowtoenhancethe5GCarchitecturetosupportfederatedlearningandonlinelearning,reportUPFservicedatatotheNWDAFforintelligentanalysis,utilizetheanalysissuggestionsfromtheNWDAF,enhancedatacollectionandstorage,supportNWDAF-assistedUErouteselectionpolicy(URSP),etc.

.NET4AI:focusesontheperformancerequirementsofAI/MLmodeldatatransmissionin3GPPRelease18inSA1,explores5GS-assistedAI/MLservicetransmission,supportsAI/MLmodeldistribution,transfer,andtraining,andappliestodifferentAIapplications,suchasvideo/speechrecognition,robotcontrol,andautomobiles.Theresearchalsocoversthepossiblearchitectureandfunctionextensionsthatsupportapplication-layerAI/ML,possibleQoSandpolicyenhancements,andhowthe5GSassistsfederatedlearningbetweenUEclientsandASs.

ITU-TSG13hasalsoexploredtheintegrationof5GnetworksandAI.InNovember2017,itestablishedtheFocusGrouponMachineLearningforFutureNetworksincluding5G(FGML5G).InJuly2020,theFGML5Gconcludedtheworkofthesecondphaseandsubmitted10technicalspecificationstoSG13,includingspecificationsonAIusecases,architecturalframework,intelligencelevels,dataprocessing,MLfunctionorchestrator,serviceframework,etc.Inaddition,theFGML5GproposedanML-orientedmanagementsubsystem,andtheconceptofmulti-domain,multi-cloud,andmulti-levelMLworkflowsbasedonthefunctionsrequiredindifferentphasesoftheMLlifecycle.

ETSIhasalsoexploredtheintegrationofICTsystemsandAI.AsearlyasFebruary2017,ETSIestablishedtheExperientialNetworkedIntelligence(ENI)IndustrySpecificationGroup(ISG).TheENIISGdefinesanAIenginethatprovidesintelligentservicesforapplicationssuchasnetworkO&M,serviceorchestration,andnetworkassurance.Figure2-3showsthefunctionalarchitectureofENI[7].

9

Figure2-3FunctionalarchitectureofENI

Currently,theENIsystemcontainsknowledgemanagement,modelmanagement,policymanagement,andothermodules.AfterdataisprocessedbyAImodules,theENIsystemcanautomaticallyprovideserviceoperationandassurance,slicemanagement,andresourceorchestrationfornetworks.ENIfunctionsarecontinuouslyevolving.Forexample,theENIsystemnowsupportsintent-drivennetworks.

TMFfocusesonOSSs/BSSswhenexploringtheintegrationof5GnetworksandAI.Currently,TMFiscarryingoutanAIandDataAnalytics(AI&DA)project,whichfocusesonthearchitecture,usecases,AIterminology,dataprocessing,andAItraining.Table2-1describestheresearchdirectionsandspecificworkofthisproject[8].

Table2-1MajorworkinvolvedintheAI&DAprojectofTMF

10

2.4ChallengesinIntegratingAIand5GMobileSystems

The5GSnetworkisexpectedtobetterutilizeAIcapabilitiestoenhancethenetworkitselfandsupportAIserviceapplications,firstintheCNandthenintheRAN.TheNWDAFintroducedin3GPPRelease16aimstoimproveAIdatacollectionandanalysiscapabilities.Forexample,itcanprovideanalysisresultinformationforothercoreNFsandUEs,helpingoptimizenetworkserviceprovisioning.TheNWDAFalsosupportsdatacollectionfromthenetworkO&Mandmanagementsysteminthe5GS,andprovidesdedicatedservicesforregisteringNFsandopeningmetadata.Evenso,theintegrationofthe5GSandAIfacesthefollowingchallenges:

.Limiteddatasources:NWDAFentitiesmainlycollectandanalyzethedatareceivedby5GCNFs.However,inabroadsense,thedatafromthewirelessinfrastructure,environment,devices,andvarioussensorsisnotfullyconsidered.Asaresult,AIdatasamplesareincomplete.

.Transmissionbandwidthconsumption:AlargenumberoftransmissionbandwidthresourcesareconsumedtocollectAIdataregardlessofcentralizedordistributedNWDAFdeployment.IfdatasourcesarefarfromNWDAFentities,theremaybelatencyindataupdates.

.Lackofdataprivacyprotection:TheNWDAFcollectsandanalyzesdatainacentralizedmanner.Datasourcesusuallycomefromthesameservicedomain.Therefore,dataprivacyprotectionisnotfullyconsideredinarchitecturedesign,anduserprivacymaybecompromised.

.LackofsupportforexternalAIservices:Asaninternalfunctionofthe5GC,theNWDAFismainlyusedtoenhanceandoptimizethe5GS.ExternalAIapplicationscannotbedirectlyservedbyorbenefitfromtheAIfunctionsofthe5GCorRAN.

.Insufficientinfrastructureutilization:Key5Gfunctions,suchasnetworkslicing,ultra-reliablelow-latencycommunication(URLLC),andmassivemachine-typecommunications(mMTC),aredesignedtomeetverticalindustryrequirementsonperformance,function,andoperation.However,thesupportfornativeAI(datagovernanceandservices,distributedarchitecture,etc.)isnotspecificallyconsideredduringthearchitecturedesignofthesekey5Gfunctions.Variousresources(thathavelowutilizationorareinanidlestate)inthenetworkinfrastructurearenotfullyutilizedbyserviceapplicationsandthevalueoftheseresourcesisnoteffectivelyrealized.

.Lackofdatagovernanceandservices:AIinvolvesmorethandatacollectionandtraining&analysisandinference.Tosupport6GnativeAI,thearchitectureofAIdatagovernanceandservicesneedstobesystematicallydesigned.Thisapproachwasnotconsideredduringthedesignofthe5GS.Thevalueofdataservicesneedstobefurthermanifestedinthefuture.

3MechanismofNativeAIintheNew6GMobileSystem

11

Theoperationdatainformationcommunicationtechnology(ODICT)industrybelievesthatnativeAIwillbecomeoneofthecorefeaturesofthenew6Gmobilesysteminthefuture[1].Therefore,deepintegrationwithAIiscomprehensivelyconsideredintherequirementandarchitecturedesignphasesofthenew6Gmobilesystem.DifferentfromaddingAIfunctionstothe5GSbymeansofadd-ons,patches,andplug-ins,thegoalofnativeAIwillbringmanyprofoundimpactsandchallengestothedesignofthenew6Gmobilesystem.Thissectionwillfirstelaboratethemotivationsandreasonsforimplementing6GnativeAI(e.g.,whynativeAIcanbetteradapttonew6Gscenariosandusecasesinthefuture,andhowtoformnewbusinessesandgeneratenewvalue).

3.1NecessityAnalysis

Withtheevolutiontowardfuturemobilenetworks,networkmanagementandO&Mneedtotransformfromlocalintelligentoperationsforlowercostandhigherefficiency,toE2Ehigh-levelnetworkautonomy.However,theR&DofexistingAIusecasesisgenerallyperformedbymeansofpatches,externalplug-ins,andsiloedadd-ons,andlacksaunifiedsystemframework.MostAImodelslackthemeanstopre-verifytheeffectofapplyingthemodelsandQoSassurance.AImodeltrainingandlearningaredecoupledfromanalysisandinferenceinthattheyarenotperformedatthesametime.TheeffectofanAImodelcanbeverifiedonlyafterAIinferenceisfinished,andthiscanhaveagreatimpactonthelivenetwork.Asaresult,high-levelnetworkautonomyisimpossible,andAImodelscannotbepre-verified,evaluatedonline,orfastoptimizedinanautomaticclosed-loopmanner.Inaddition,AImodeltraining/retrainingrequiresalargeamountofsampledata,butitisdifficulttocollectdatainacentralizedmanner.Thisleadstoanumberofissues,forexample,highnetworktransmissionoverheadandtrainingoverhead,longiterationandupdatetime,slowconvergence,andpoorgeneralizabilityofAImodels.Therefore,thenew6GmobilesystemneedstofurtherenhancethetrainingandapplicationperformanceofAImodelssoastoimprovethenetworkautonomylevel.

ThekeydrivingforcesofnativeAIincludeassistingvariousverticalindustriesinintelligentdigitaltransformation,exploringnewintelligentbusinessmodels,andprovidingnew6Gscenariosandcapabilities.Onthepremiseofprotectingdataprivacyofverticalindustriesandpreventingdatafrombeingtransferredoutofcampuses,thenew6Gmobilesystemmustbeabletoprovidedistributedandregionalcomputingresources,platforms,andservicestoflexiblyprovisionintelligencecapabilitiesondemandanytime,anywhere,andenabledata-centriccomputing.ComparedwithtraditionalcloudAIserviceproviders,6GnativeAIcanprovideintelligencecapabilitiesandserviceswithhighertimeliness,privacy,andperformance.Inaddition,6GnativeAIcanprovideinter-industryfederatedintelligencetofacilitatecross-domainandcross-industryintelligenceconvergenceandintelligentdigitalsharing.

Withtheevolutionofintelligentdevicesinthefuture,massivedeviceswillgeneratemoredata,andthecomputingandintelligencecapabilitiesofdeviceswillbecomeincreasinglystronger.6GnativeAIneedstocoordinatenetworkAIanddeviceAItoprovideToCuserswiththeultimateserviceexperienceandhigher-valuenoveldatainformationcommunicationtechnology(DICT)services.Ensuringthesecurityandtrustworthinessoffuturenetworksisalsoanimportantresearchtopic.NativeAIcanpromotetherealizationofnativenetworksecurityandtrustworthiness,andautonomouslydetectanddefendagainstvarioustypesofpotentialattacksandthreats.

3.2FeasibilityAnalysis

Thesuccessfulintegrationofthe5GSandAIhasproventhefeasibilityofimplementingnetworkintelligencetosomeextent.ThissectionanalyzesthefeasibilityofdeeplyintegratingnativeAIandthenew6GmobilesystemfromtheperspectiveofthreekeyAIelements.

.Computingpower:Duetotherequirementsonlatency,reliability,datasecurity,andprivacyprotection,deployingcomputingcapabilitiesandresourcesonthenetworkedgeshasbecomeamajortrendinthe5Gera.Inthe6Gera,dataconnectionandcomputingmaybefurtherintegrated.

12

Forexample,adual-infrastructurethatintegratesbothconnectionandcomputingmayemerge,whichcanprovideacomputingservice-relatedbasisforintegratednativeAIdesign.

.Algorithm:AlthoughcentralizeddataprocessingontheAIcloudhasitsadvantages,issuesrelatedtodataprivacy,highperformance,andcomputingenergyconsumptionremainchallenging.Ifthenew6Gmobilesystemcanintegratealgorithms/modelsandintelligencecapabilitiesintothenetwork,th

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論