版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1
Abstract
Thenext-generation6Gmobilesystemaimstosupportandimplementintelligentconnectionofeverything,intelligentassociationofservicesandtasks,andinclusiveintelligence.Itwillbecomeapowerfulintelligentinfrastructureplatformthatsupportsandempowersawidevarietyofindustries.Withtheacquisitionofconsumersatalllevelsandthein-depthdevelopmentofdigitalandintelligentapplicationsinvariousindustries,thereisanincreasinglyurgentneedtoprovidenativeAIcapabilitiesandservicesinnew6Gnetworks.Thiswhitepapersystematicallyanalyzesandsummarizesthetechnicalrequirementsandimpacts(intermsofcapability,service,architecture,standardization,etc.)ofnativeAIdesignbasedontherequirementsandtrendsoffuture6Gbusinessforms,newindustryscenariosandusecases,andnewtechnologiestoeffectivelysupportthedesignandimplementationofnativeAI-relatedtechnicalsolutionsfornew6Gnetworks.
Theorganizationsthathaveparticipatedinwritingthiswhitepaperincludebutarenotlimitedto:ZTE,CICTMobile,Huawei,ChinaMobile,ChinaTelecom,ChinaUnicom,ShanghaiTechUniversity,ChongqingUniversityofPostsandTelecommunications,NokiaShanghaiBell,vivo,PurpleMountainLaboratories,AsiaInfo,Ericsson,DalianMaritimeUniversity,andPengChengLaboratory.Manythankstoalltheseorganizationsfortheircontributions.
2
Contents
1Introduction 4
2ApplicationsIntegratingAIand5GMobileSystems 5
2.1StatusQuoofAIfor5G 5
2.2StatusQuoof5GforAI 5
2.3StatusQuoof5GNetworkAI 6
2.4ChallengesinIntegratingAIand5GMobileSystems 10
3MechanismofNativeAIintheNew6GMobileSystem 11
3.1NecessityAnalysis 11
3.2FeasibilityAnalysis 11
3.3GainAnalysis 12
3.4AnalysisofNewFeaturesandNewParadigms 13
4TechnicalRequirementsofNativeAIintheNew6GMobileSystem 15
4.1CapabilityRequirements 15
4.1.1ComputingPowerRequirements 15
4.1.2AlgorithmRequirements 16
4.1.3DataRequirements 17
4.1.4OtherRequirements 17
4.2ServiceRequirements 18
4.2.1ComputingServiceRequirements 18
4.2.2AlgorithmServiceRequirements 19
4.2.3DataServiceRequirements 20
4.2.4OtherServiceRequirements 21
4.3ArchitectureRequirements 22
4.3.1ComputingArchitecture 22
4.3.2AlgorithmArchitecture 25
4.3.3DataArchitecture 26
4.3.4OtherArchitectures 28
5SummaryofTechnicalRequirementsandPrinciples 29
References 30
AcronymsandAbbreviations 31
3
Authors
Contributor
Organization
LiYang,FengXie,HonghuiKang,YanXue,MenghanWang,JiaohongNiu
ZTECorporation
MingAi,XiaoyanDuan,WanfeiSun,MinShu
CICTMobile
ChenghuiPeng,ZheLiu,JunWang,FeiWang
HuaweiTechnologiesCo.,Ltd.
GangLi,ZiruiWen
ChinaMobile
XuXia,MenghanYu,HengWang,WenQi
ChinaTelecom
BingmingHuang,JunLiao
ChinaUnicom
YangYang,LiantaoWu,KaiLi,ChenyuGong,MuleiMa
ShanghaiTechUniversity
ChengchaoLiang,LunTang,RongChai,GuozhongWang
ChongqingUniversityofPostsand
Telecommunications
GangShen,ChenhuiYe,KaibinZhang,
FangfangGu
NokiaShanghaiBell
YannanYuan,BuleSun
vivoMobileCommunicationCo.,Ltd.
LanlanLi,JianjieYou
PurpleMountainLaboratories
YeOuyang,DaWang,YangBai,YanZhao
AsiaInfoTechnologiesCo.,Ltd.
LingSu,DandanHao
Ericsson
TingtingYang,JiahongNing,ZhengqiCui
DalianMaritimeUniversity/PengCheng
Laboratory
1Introduction
4
NativeAIisconsideredtobeoneofthecorearchitecturefeaturesofthefuture6Gmobilesystem[1].WiththerapiddevelopmentofAItechnologiesandapplications,theirscientificconcepts,paradigms/modes,algorithms/models,andmethods/meansneedtobemorecloselyanddeeplyembeddedintothearchitecture,NEs,andfunctionalprocessesofthenew6Gmobilesystem.Inaddition,theyneedtoleveragetheadvantagesofthenew6Gmobilesystemasapowerfulandubiquitoustelecominfrastructureplatformsoastofurthermanifesttheperformance/effectivenessgainsandbenefitsofAI,andcomprehensivelyhelprealizethevisionsoftheintelligentconnectionofeverything,intelligentassociationofservicesandtasks,andinclusiveintelligenceinthe6Gera.ThiswhitepaperbrieflyintroducesthebackgroundandmotivationsofnativeAI,andsystematicallyelaboratesnumeroustechnicalrequirements(intermsoffunction,performance,service,architecture,etc.)involvedinthedesignofnativeAIforthenew6Gmobilesystem,coveringthreebasicAIelements:AIcomputingpower,AIalgorithm,andAIdata.Further,thispaperfurtheranalyzesandsummarizesthecomprehensiveimpactsandrequirementsofnativeAIonthearchitectureandstandardizationofthenew6Gmobilesystembasedonthelatestresearch.
2ApplicationsIntegratingAIand5GMobileSystems
5
AI,especiallymachinelearning(ML)anddeeplearning(DL),wasfirstintegratedwiththe5Gsystem(5GS)accordingto3GPPspecifications.However,AIserviceapplicationsandrelatedcapabilitiesandservices,forexample,howtooptimizeaspecificcommunicationworkingmechanismbasedonnewAIparadigms,werenotfullyconsideredduringthedesign(referredtoasthenativephase)ofthe5GS.The5GSmobilesystemhasshowntendencytowardcloudnative,software-definednetworking(SDN),andservicevirtualization.Forexample,itsupportsServiceBasedArchitecture(SBA)CNandcloud-basedCN.Inaddition,allianceorganizationssuchasO-RANandOpenRANhavebeenactivelypromotingtheopenness,cloudification,andvirtualizationofwirelessnetworks.Nevertheless,theNextGenerationRadioAccessNetwork(NG-RAN)subsystemofthe5GSretainsthetraditional"siloedCT-basedbasestationarchitecture"andrelativelyrigidRANprotocolstackmodelsduetorestrictionsintermsoftechnologymaturity,security,andsystemO&Mcomplexity.WiththegradualpenetrationandprovenbenefitsofAIfunctionsandservices,the5GScanaddthenetworkdataanalyticsfunction(NWDAF)—anewlogicalfunctionnode—andvariousmodule-level"externalplug-in/add-on"AIfunctionstotheCNbasedontheexistingsystemarchitectureandprotocolstacktofurtherenhancesystemperformanceandexternalservicecapabilities.Each"externalplug-in/add-on"AIfunctionalmoduleisdevelopedforspecificknowncommunicationissue,suchasslicequalityassurance,qualityofexperience(QoE)optimization,mobilityprediction,faultlocating,andnetworkplanning,optimization,andO&M.TheseAIfunctionalmodulesareaddedtoimprovetheperformanceofthe5GS,optimizewirelesstransmissionefficiency,andsimplifynetworkmanagementandO&M.
2.1StatusQuoofAIfor5G
ManypracticeshaveproventhatAI,ML,andDLarefeasibleandeffectivemethodsforsolvingmulti-dimensionalcomplexandcomputing-intensiveproblemsintraditionalwirelesscommunication.Currently,AI,ML,andDLhavebeenpreliminarilyappliedandverifiedatmultiplelevelsandinmultiplebusinessdomainsofthe5GS.Prominentexamplesinclude:1)Anintelligentplatformhelpssimplify5GSO&M,optimizefunctionssuchasservicescenarioidentification,networkanomalydetection,andfaultrootcauseanalysis,andincreaseenergysaving.2)Anintelligentmoduleoptimizesthedeploymentofnetworkpoliciesandresourcesandimprovestheaccuracyofparametersettings.3)Intelligentchannelstateinformation(CSI)compressionisusedtoprovidefeedbackonresourceoverheads.4)Intelligentmodulationandcodinghelpimproveairinterfaceresourceutilization.5)Userexperienceisimprovedbyintelligentlyidentifyingandpredictingnetworktrafficdistribution,usertrajectory,anduserbehavior[2].AlltheprecedingexamplescanbecalledAIforNetwork(AI4NET).TheydemonstratethevalueofAIasanadvancedtechnologytoempowerandoptimizethe5GSinspecificaspects.AIalgorithms/modelsinthe5GSareappliedtosolvespecificknowncommunicationissues.Thatis,thesemodelshaveundergonealotofdedicatedofflinetrainingandverification.Althoughtheyonlyhelpmitigateorsolvespecificissues,theyalsoimprovecommunicationserviceperformanceandreducesystemO&Mcoststoacertainextent.Ingeneral,thecurrentAI4NETstillneedsimprovementintermsofsystematicness,thoroughness,globality,andexplainability.TheAIcapabilityextensibility,iterationenhancement,andAImodelgeneralizabilityaregreatlyrestricted.Inaddition,variousAIresourcesandcapabilities(coveringAIcomputingpower,algorithms,anddata)inthecurrent5GSarenotopenorservice-oriented.Mostofthemareusedonlywithinthesystem.
2.2StatusQuoof5GforAI
Currently,variousmobileAIapplications(e.g.,AIrecognition,classification,andprocessingofvoice,images,videos,anddata)areprovidedforendusersinlocalizedorcentralizedcloudAIservicemode(e.g.,thepubliccloudsrepresentedbyAmazonAWS,MicrosoftAzure,GoogleCloud,andAlibabaCloud).Therefore,the5GSactsmoreasanunderlyingdatatransmissionpipe.The5GStransmitsdataflowsrelatedtoAImodeltrainingandAIserviceapplicationsascommonuserservicedata.ThelargeamountsofsampledatarequiredforcloudAImodeltrainingaretransmittedintheformofapplication-layerdatainthe5GSinanE2Emanner.Inaddition,3GPPRelease16hasdefinedtheNWDAFandrelatedinteraction
6
interfacestoimplementintelligentapplicationsinsidethenetworkandempowerAIinternallyandexternally,therebyreducingthedependencyontraditionalcloudAI.AlltheprecedingexamplescanbecalledNetworkforAI(NET4AI),whichreflectsthebenefitsofthe5GStoAIbusinessesandservices.ForNET4AIintelligentapplications,therequirementsonKPIsrelatedtonetworkconnectionperformanceinspecificscenarioshavebeenspecifiedfrom3GPPTS22.261[3].However,intheprecedingNET4AImobileapplicationexamples,alloperationsinupper-layercloudAImodearealmosttransparenttothe5GS,andcross-layerdeepintegrationorcooperationbetweenupper-layerAIapplicationsandlower-layernetworkpipesisnotrealized.Inaddition,thecommunication,sensing,andcomputingresources,capabilities,anddatainthe5GSarenotfullyopentoandutilizedbyintelligentNEssuchastheupper-layercloudAIapplicationserversorNWDAFs,andarenotwelladaptedtoupper-layerAIserviceapplications.Thecomputingpower,algorithm,anddataresourcesownedbyeachlogicalNEnodeinthe5GSarenotfullyscheduledorutilizedbyexternalAIfunctionentities.Mostoftheseresources,suchaslargeamountsofbasebandcomputingpowerandwirelessdatainbasestations,serveonlytraditionalcommunication—ifnotleftidle.Itisexpectedthatthenew6Gmobilesystemwillnativelysupportthecapabilitiesoffullyutilizingthecomputingpower,algorithm,anddataresourcesandcapabilitiesofnew6Gnetworks,maximizingthevalueoftheseresourcestobusinessesandservices,andfurtherexpandingtheprofitabilitysystemofmobileoperators.
2.3StatusQuoof5GNetworkAI
AlthoughAIwasnotnativelyconsideredduring5Gnetworkdesign,5GNetworkAI,thatis,integratingAIand5Gnetworksformutualbenefits,hasbeencontinuouslyexploredandcontinuestoevolve.Standardsorganizationsandforumssuchas3GPP,ITU-T,ETSI,andTMFhaveprogressedintheexplorationof5GNetworkAI.
3GPPhasmadepreliminaryexplorationsinto5GNetworkAI.Thestatusandprogressareasfollows:
In3GPPRelease16,anewlogicalfunctionentity,NWDAF,wasaddedtothenetworkarchitectureofthe5GS,asshowninFigure2-1.Fordetails,see3GPPTS23.288[4].NWDAFsinteractwithotherfunctionentitiesinthe5GC(e.g.,AF,PCF,AMF,andSMF)toprovidemultipletypesofnetworkdataanalysisservices.Theofferedservicesincludereceivingnetworkdataanalysisrequestsfromeachnetworkfunction(NF)entityintheCN,collectingtherequestednetworkdata,leveragingAIalgorithmsfordataanalysisandinference,andreturningthenetworkanalysisresultinformationtotherequestingNFentity.EachNFmonitorstheoperatingstatusesofthe5GSnetworkanddevicesbasedonthenetworkanalysisresultinformationprovidedbyNWDAFs,andperformsclosed-loopcontrolandoptimizationoncommunicationservices.Asof3GPPRelease17,NWDAFscananalyzenetworkserviceexperience,networkperformance,sliceload,NFload,UEmobility/communication/anomalyevents,qualityofservice(QoS)sustainability,anduserdatacongestion.
Figure2-1NWDAF-based5Gnetworkdataanalysisarchitecture(See3GPPTS23.288.)
Thearchitectureandfunctionsof5GSnetworkdataanalysiswereenhancedin3GPPRelease17,including:logicalfunctionsplittingandinteractionwithinanNWDAF,collaborativedatatrainingandmodelsharingamongmultipleNWDAFinstances,andadditionofnewfunctionentitiestoimprovedatacollectionefficiencyandenhancereal-timeperformance.TheNWDAFspecifiedin3GPPRelease17hasthefollowingfeatures:
7
.NWDAFentitydeploymentismoreflexible.Thecentralized,distributed,andhybrid(centralized+distributed)deploymentmodesaresupported.
.MultipleNWDAFentitiescancollaboratewitheachother(e.g.,duringanalysisaggregation,analysistransfer,andAIdata/modelsharing).
.TheNWDAFcanbefurtherdecomposedintomodeltraininglogicfunction(MTLF)andanalyticlogicfunction(AnLF).AnMTLFcanprovideMLmodelsforNWDAFentitiesotherthantheNWDAFtowhichtheMTLFbelongs.
.Thedatacollectioncontrolfunction(DCCF),analyticdatarepositoryfunction(ADRF),andrelateddatacollectionoptimizationprocessesareadded.
.NWDAFentitiescancollectdatafromUEs.
.Edgecomputingserviceexperienceandnetworkperformancecanbeanalyzed.
.UEsandsessionscanbeanalyzedfromthefollowingaspects:sliceloads,discretedistributionofdata/signaling,WLANperformance,userplaneperformance,sessioncongestioncontrol,andredundanttransmission.
3GPPRelease17alsoresearchedonandstandardizedtheintelligenceofthe5GSmanagementplane.Themanagementdataanalytics(MDA)functionwasadded,asshowninFigure2-2.Fordetails,see3GPPTS28.104[5].MDAcollectsdatarelatedtonetworkandserviceeventsandstatus.Suchdataincludesnetworkperformancemeasurementdata,trace/MinimizationofDriveTests(MDT)/QoEreports,alarms,configurationdata,networkanalysisdata,andAFserviceexperiencedata.MDAperformsdataanalysisbasedonspecificAIalgorithms,generatesanalysisresultreports,andperformsnetworkmanagementoperationsbasedontheanalysisresultreports,therebyimplementingautomaticandintelligentnetworkmanagementandO&M.
Figure2-2MDAfunctionandserviceframework(See3GPPTS28.104.)
3GPPRelease17isalsoresearchingonRANintelligence.Fordetails,see3GPPTR37.817[6].Thepotentialapplicationscenariosincludenetworkenergysaving,loadbalancing,andUEmobilitymanagement.
8
3GPPRelease18continuestheresearchontheperformancerequirementsofAI/MLmodeldatatransmissioninthe5GS.Fordetails,see3GPPTS22.261[3].The5GSprovidesQoSguaranteeforAI/MLmodeldatatransmissionbasedonAI/MLserviceorapplicationrequirements.The5GScanalsomonitorthetransmissionstatus(e.g.,transmissionrate,latency,andreliability)ofAI/MLmodeldataandreportthestatustoAIapplicationserverssothattheserversadjustAIapplication-layerparametersaccordingly.
Currently,3GPPRelease18isstillintheinitiationphasein3GPPSA2.Itconsidersnetworkintelligencefromthefollowingtwoaspects:
.AI4NET:focuseson5GCNE-relatedanalysisandresearchonpotentialarchitectureenhancements,newscenarios,etc.TheresearchonAI4NETincludeswhetherandhowtoenhancethe5GCarchitecturetosupportfederatedlearningandonlinelearning,reportUPFservicedatatotheNWDAFforintelligentanalysis,utilizetheanalysissuggestionsfromtheNWDAF,enhancedatacollectionandstorage,supportNWDAF-assistedUErouteselectionpolicy(URSP),etc.
.NET4AI:focusesontheperformancerequirementsofAI/MLmodeldatatransmissionin3GPPRelease18inSA1,explores5GS-assistedAI/MLservicetransmission,supportsAI/MLmodeldistribution,transfer,andtraining,andappliestodifferentAIapplications,suchasvideo/speechrecognition,robotcontrol,andautomobiles.Theresearchalsocoversthepossiblearchitectureandfunctionextensionsthatsupportapplication-layerAI/ML,possibleQoSandpolicyenhancements,andhowthe5GSassistsfederatedlearningbetweenUEclientsandASs.
ITU-TSG13hasalsoexploredtheintegrationof5GnetworksandAI.InNovember2017,itestablishedtheFocusGrouponMachineLearningforFutureNetworksincluding5G(FGML5G).InJuly2020,theFGML5Gconcludedtheworkofthesecondphaseandsubmitted10technicalspecificationstoSG13,includingspecificationsonAIusecases,architecturalframework,intelligencelevels,dataprocessing,MLfunctionorchestrator,serviceframework,etc.Inaddition,theFGML5GproposedanML-orientedmanagementsubsystem,andtheconceptofmulti-domain,multi-cloud,andmulti-levelMLworkflowsbasedonthefunctionsrequiredindifferentphasesoftheMLlifecycle.
ETSIhasalsoexploredtheintegrationofICTsystemsandAI.AsearlyasFebruary2017,ETSIestablishedtheExperientialNetworkedIntelligence(ENI)IndustrySpecificationGroup(ISG).TheENIISGdefinesanAIenginethatprovidesintelligentservicesforapplicationssuchasnetworkO&M,serviceorchestration,andnetworkassurance.Figure2-3showsthefunctionalarchitectureofENI[7].
9
Figure2-3FunctionalarchitectureofENI
Currently,theENIsystemcontainsknowledgemanagement,modelmanagement,policymanagement,andothermodules.AfterdataisprocessedbyAImodules,theENIsystemcanautomaticallyprovideserviceoperationandassurance,slicemanagement,andresourceorchestrationfornetworks.ENIfunctionsarecontinuouslyevolving.Forexample,theENIsystemnowsupportsintent-drivennetworks.
TMFfocusesonOSSs/BSSswhenexploringtheintegrationof5GnetworksandAI.Currently,TMFiscarryingoutanAIandDataAnalytics(AI&DA)project,whichfocusesonthearchitecture,usecases,AIterminology,dataprocessing,andAItraining.Table2-1describestheresearchdirectionsandspecificworkofthisproject[8].
Table2-1MajorworkinvolvedintheAI&DAprojectofTMF
10
2.4ChallengesinIntegratingAIand5GMobileSystems
The5GSnetworkisexpectedtobetterutilizeAIcapabilitiestoenhancethenetworkitselfandsupportAIserviceapplications,firstintheCNandthenintheRAN.TheNWDAFintroducedin3GPPRelease16aimstoimproveAIdatacollectionandanalysiscapabilities.Forexample,itcanprovideanalysisresultinformationforothercoreNFsandUEs,helpingoptimizenetworkserviceprovisioning.TheNWDAFalsosupportsdatacollectionfromthenetworkO&Mandmanagementsysteminthe5GS,andprovidesdedicatedservicesforregisteringNFsandopeningmetadata.Evenso,theintegrationofthe5GSandAIfacesthefollowingchallenges:
.Limiteddatasources:NWDAFentitiesmainlycollectandanalyzethedatareceivedby5GCNFs.However,inabroadsense,thedatafromthewirelessinfrastructure,environment,devices,andvarioussensorsisnotfullyconsidered.Asaresult,AIdatasamplesareincomplete.
.Transmissionbandwidthconsumption:AlargenumberoftransmissionbandwidthresourcesareconsumedtocollectAIdataregardlessofcentralizedordistributedNWDAFdeployment.IfdatasourcesarefarfromNWDAFentities,theremaybelatencyindataupdates.
.Lackofdataprivacyprotection:TheNWDAFcollectsandanalyzesdatainacentralizedmanner.Datasourcesusuallycomefromthesameservicedomain.Therefore,dataprivacyprotectionisnotfullyconsideredinarchitecturedesign,anduserprivacymaybecompromised.
.LackofsupportforexternalAIservices:Asaninternalfunctionofthe5GC,theNWDAFismainlyusedtoenhanceandoptimizethe5GS.ExternalAIapplicationscannotbedirectlyservedbyorbenefitfromtheAIfunctionsofthe5GCorRAN.
.Insufficientinfrastructureutilization:Key5Gfunctions,suchasnetworkslicing,ultra-reliablelow-latencycommunication(URLLC),andmassivemachine-typecommunications(mMTC),aredesignedtomeetverticalindustryrequirementsonperformance,function,andoperation.However,thesupportfornativeAI(datagovernanceandservices,distributedarchitecture,etc.)isnotspecificallyconsideredduringthearchitecturedesignofthesekey5Gfunctions.Variousresources(thathavelowutilizationorareinanidlestate)inthenetworkinfrastructurearenotfullyutilizedbyserviceapplicationsandthevalueoftheseresourcesisnoteffectivelyrealized.
.Lackofdatagovernanceandservices:AIinvolvesmorethandatacollectionandtraining&analysisandinference.Tosupport6GnativeAI,thearchitectureofAIdatagovernanceandservicesneedstobesystematicallydesigned.Thisapproachwasnotconsideredduringthedesignofthe5GS.Thevalueofdataservicesneedstobefurthermanifestedinthefuture.
3MechanismofNativeAIintheNew6GMobileSystem
11
Theoperationdatainformationcommunicationtechnology(ODICT)industrybelievesthatnativeAIwillbecomeoneofthecorefeaturesofthenew6Gmobilesysteminthefuture[1].Therefore,deepintegrationwithAIiscomprehensivelyconsideredintherequirementandarchitecturedesignphasesofthenew6Gmobilesystem.DifferentfromaddingAIfunctionstothe5GSbymeansofadd-ons,patches,andplug-ins,thegoalofnativeAIwillbringmanyprofoundimpactsandchallengestothedesignofthenew6Gmobilesystem.Thissectionwillfirstelaboratethemotivationsandreasonsforimplementing6GnativeAI(e.g.,whynativeAIcanbetteradapttonew6Gscenariosandusecasesinthefuture,andhowtoformnewbusinessesandgeneratenewvalue).
3.1NecessityAnalysis
Withtheevolutiontowardfuturemobilenetworks,networkmanagementandO&Mneedtotransformfromlocalintelligentoperationsforlowercostandhigherefficiency,toE2Ehigh-levelnetworkautonomy.However,theR&DofexistingAIusecasesisgenerallyperformedbymeansofpatches,externalplug-ins,andsiloedadd-ons,andlacksaunifiedsystemframework.MostAImodelslackthemeanstopre-verifytheeffectofapplyingthemodelsandQoSassurance.AImodeltrainingandlearningaredecoupledfromanalysisandinferenceinthattheyarenotperformedatthesametime.TheeffectofanAImodelcanbeverifiedonlyafterAIinferenceisfinished,andthiscanhaveagreatimpactonthelivenetwork.Asaresult,high-levelnetworkautonomyisimpossible,andAImodelscannotbepre-verified,evaluatedonline,orfastoptimizedinanautomaticclosed-loopmanner.Inaddition,AImodeltraining/retrainingrequiresalargeamountofsampledata,butitisdifficulttocollectdatainacentralizedmanner.Thisleadstoanumberofissues,forexample,highnetworktransmissionoverheadandtrainingoverhead,longiterationandupdatetime,slowconvergence,andpoorgeneralizabilityofAImodels.Therefore,thenew6GmobilesystemneedstofurtherenhancethetrainingandapplicationperformanceofAImodelssoastoimprovethenetworkautonomylevel.
ThekeydrivingforcesofnativeAIincludeassistingvariousverticalindustriesinintelligentdigitaltransformation,exploringnewintelligentbusinessmodels,andprovidingnew6Gscenariosandcapabilities.Onthepremiseofprotectingdataprivacyofverticalindustriesandpreventingdatafrombeingtransferredoutofcampuses,thenew6Gmobilesystemmustbeabletoprovidedistributedandregionalcomputingresources,platforms,andservicestoflexiblyprovisionintelligencecapabilitiesondemandanytime,anywhere,andenabledata-centriccomputing.ComparedwithtraditionalcloudAIserviceproviders,6GnativeAIcanprovideintelligencecapabilitiesandserviceswithhighertimeliness,privacy,andperformance.Inaddition,6GnativeAIcanprovideinter-industryfederatedintelligencetofacilitatecross-domainandcross-industryintelligenceconvergenceandintelligentdigitalsharing.
Withtheevolutionofintelligentdevicesinthefuture,massivedeviceswillgeneratemoredata,andthecomputingandintelligencecapabilitiesofdeviceswillbecomeincreasinglystronger.6GnativeAIneedstocoordinatenetworkAIanddeviceAItoprovideToCuserswiththeultimateserviceexperienceandhigher-valuenoveldatainformationcommunicationtechnology(DICT)services.Ensuringthesecurityandtrustworthinessoffuturenetworksisalsoanimportantresearchtopic.NativeAIcanpromotetherealizationofnativenetworksecurityandtrustworthiness,andautonomouslydetectanddefendagainstvarioustypesofpotentialattacksandthreats.
3.2FeasibilityAnalysis
Thesuccessfulintegrationofthe5GSandAIhasproventhefeasibilityofimplementingnetworkintelligencetosomeextent.ThissectionanalyzesthefeasibilityofdeeplyintegratingnativeAIandthenew6GmobilesystemfromtheperspectiveofthreekeyAIelements.
.Computingpower:Duetotherequirementsonlatency,reliability,datasecurity,andprivacyprotection,deployingcomputingcapabilitiesandresourcesonthenetworkedgeshasbecomeamajortrendinthe5Gera.Inthe6Gera,dataconnectionandcomputingmaybefurtherintegrated.
12
Forexample,adual-infrastructurethatintegratesbothconnectionandcomputingmayemerge,whichcanprovideacomputingservice-relatedbasisforintegratednativeAIdesign.
.Algorithm:AlthoughcentralizeddataprocessingontheAIcloudhasitsadvantages,issuesrelatedtodataprivacy,highperformance,andcomputingenergyconsumptionremainchallenging.Ifthenew6Gmobilesystemcanintegratealgorithms/modelsandintelligencecapabilitiesintothenetwork,th
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 南京醫(yī)科大學2026年招聘人事代理人員備考題庫及一套答案詳解
- 2025至2030中國氫燃料電池汽車產(chǎn)業(yè)發(fā)展瓶頸及商業(yè)化路徑研究報告
- 2026年招唐山中心醫(yī)院發(fā)布招聘備考題庫及一套參考答案詳解
- 2026年浙江省立同德醫(yī)院公開招聘人員169人備考題庫及1套參考答案詳解
- 2025-2030中國氯鉑酸鉀市場需求預(yù)測及前景動態(tài)研究研究報告
- 2025-2030中國野營房市場需求格局與發(fā)展前景趨勢預(yù)測研究報告
- 寧夏銀行2026年度校園招聘備考題庫及參考答案詳解一套
- 2026年溫嶺市青少年宮招聘外聘專業(yè)教師備考題庫及一套完整答案詳解
- 2026年首都醫(yī)科大學國家醫(yī)療保障研究院人員招聘備考題庫及答案詳解參考
- 寧波象山海洋產(chǎn)業(yè)投資集團有限公司2025年度第一期公開招聘緊缺急需人員備考題庫及完整答案詳解一套
- 2025年國際政治格局:多極化與地緣政治風險
- 有害物質(zhì)管控標準
- T-CSUS 69-2024 智慧水務(wù)技術(shù)標準
- 國家開放大學法學本科《商法》歷年期末考試試題及答案題庫
- UL583標準中文版-2018電動工業(yè)車輛UL中文版標準
- 2024年新華東師大版七年級上冊數(shù)學全冊教案(新版教材)
- 新版高中物理必做實驗?zāi)夸浖捌鞑?(電子版)
- 冀人版五年級科學上冊期末測試卷4份(含答案)
- 菜肴造型與盛裝工藝
- 甲狀腺癌醫(yī)學知識講座
- ABAQUS在隧道及地下工程中的應(yīng)用
評論
0/150
提交評論