版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年湖南省桃源縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,為測量平地上一塊不規(guī)則區(qū)域(圖中的陰影部分)的面積,畫一個邊長為4m的正方形,使不規(guī)則區(qū)域落在正方形內(nèi).現(xiàn)向正方形內(nèi)隨機(jī)投擲小球(假設(shè)小球落在正方形內(nèi)每一點(diǎn)都是等可能的),經(jīng)過大量重復(fù)投擲試驗(yàn),發(fā)現(xiàn)小球落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.65附近,由此可估計不規(guī)則區(qū)域的面積約為()A.2.6m2 B.5.6m2 C.8.25m2 D.10.4m22.如圖,△ABC是⊙O的內(nèi)接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點(diǎn)D,則∠BAD的度數(shù)是()A.45° B.85° C.90° D.95°3.已知:如圖,點(diǎn)P是正方形ABCD的對角線AC上的一個動點(diǎn)(A、C除外),作PE⊥AB于點(diǎn)E,作PF⊥BC于點(diǎn)F,設(shè)正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是()A. B. C. D.4.若拋物線y=x2﹣3x+c與y軸的交點(diǎn)為(0,2),則下列說法正確的是()A.拋物線開口向下B.拋物線與x軸的交點(diǎn)為(﹣1,0),(3,0)C.當(dāng)x=1時,y有最大值為0D.拋物線的對稱軸是直線x=5.如圖,正比例函數(shù)y=x與反比例函數(shù)y=4x的圖象交于A(2,2)、B(﹣2,﹣2)兩點(diǎn),當(dāng)y=x的函數(shù)值大于A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>26.某種品牌手機(jī)經(jīng)過二、三月份再次降價,每部售價由1000元降到810元,則平均每月降價的百分率為()A.20% B.11% C.10% D.9.5%7.一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球則兩次摸到的球的顏色不同的概率為()A. B. C. D.8.如圖,A、B、C是小正方形的頂點(diǎn),且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.9.計算4+(﹣2)2×5=()A.﹣16B.16C.20D.2410.如圖,在平面直角坐標(biāo)系xOy中,A(2,0),B(0,2),⊙C的圓心為點(diǎn)C(﹣1,0),半徑為1.若D是⊙C上的一個動點(diǎn),線段DA與y軸交于E點(diǎn),則△ABE面積的最小值是()A.2B.83C.2+2二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:=______.12.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與軸相交于點(diǎn)A、B,若其對稱軸為直線x=2,則OB–OA的值為_______.13.有一組數(shù)據(jù):2,3,5,5,x,它們的平均數(shù)是10,則這組數(shù)據(jù)的眾數(shù)是.14.?dāng)?shù)據(jù):2,5,4,2,2的中位數(shù)是_____,眾數(shù)是_____,方差是_____.15.如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交AC于E,交BC的延長線于F,若∠F=30°,DE=1,則BE的長是.16.如圖,有一個橫截面邊緣為拋物線的水泥門洞,門洞內(nèi)的地面寬度為,兩側(cè)離地面高處各有一盞燈,兩燈間的水平距離為,則這個門洞的高度為_______.(精確到)17.一個不透明的袋子中裝有三個小球,它們除分別標(biāo)有的數(shù)字1,3,5不同外,其他完全相同.從袋子中任意摸出一球后放回,再任意摸出一球,則兩次摸出的球所標(biāo)數(shù)字之和為8的概率是__________.三、解答題(共7小題,滿分69分)18.(10分)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(-3,0),B(0,-3),C(1,0)三點(diǎn).(1)求拋物線的解析式;(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;(3)若點(diǎn)P是拋物線上的動點(diǎn),點(diǎn)Q是直線y=-x上的動點(diǎn),判斷有幾個位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).19.(5分)如圖,Rt△ABC,CA⊥BC,AC=4,在AB邊上取一點(diǎn)D,使AD=BC,作AD的垂直平分線,交AC邊于點(diǎn)F,交以AB為直徑的⊙O于G,H,設(shè)BC=x.(1)求證:四邊形AGDH為菱形;(2)若EF=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式;(3)連結(jié)OF,CG.①若△AOF為等腰三角形,求⊙O的面積;②若BC=3,則CG+9=______.(直接寫出答案).20.(8分)張老師在黑板上布置了一道題:計算:2(x+1)2﹣(4x﹣5),求當(dāng)x=和x=﹣時的值.小亮和小新展開了下面的討論,你認(rèn)為他們兩人誰說的對?并說明理由.21.(10分)“垃圾不落地,城市更美麗”.某中學(xué)為了了解七年級學(xué)生對這一倡議的落實(shí)情況,學(xué)校安排政教處在七年級學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對學(xué)生“是否隨手丟垃圾”這一情況進(jìn)行了問卷調(diào)查,統(tǒng)計結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項(xiàng).要求每位被調(diào)查的學(xué)生必須從以上三項(xiàng)中選一項(xiàng)且只能選一項(xiàng).現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負(fù)不完整的統(tǒng)計圖.請你根據(jù)以上信息,解答下列問題:(1)補(bǔ)全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學(xué)生“是否隨手丟垃圾”情況的眾數(shù)是;(3)若該校七年級共有1500名學(xué)生,請你估計該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?2.(10分)如圖,△ABC中,∠C=90°,∠A=30°.用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點(diǎn)D,交AB于點(diǎn)E.(保留作圖痕跡,不要求寫作法和證明);連接BD,求證:BD平分∠CBA.23.(12分)已知:a是﹣2的相反數(shù),b是﹣2的倒數(shù),則(1)a=_____,b=_____;(2)求代數(shù)式a2b+ab的值.24.(14分)如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),其中點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3).(1)求拋物線的解析式;(2)將拋物線向下平移h個單位長度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;(3)設(shè)點(diǎn)P是拋物線上且在x軸上方的任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
首先確定小石子落在不規(guī)則區(qū)域的概率,然后利用概率公式求得其面積即可.【詳解】∵經(jīng)過大量重復(fù)投擲試驗(yàn),發(fā)現(xiàn)小石子落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.65附近,∴小石子落在不規(guī)則區(qū)域的概率為0.65,∵正方形的邊長為4m,∴面積為16m2設(shè)不規(guī)則部分的面積為sm2則=0.65解得:s=10.4故答案為:D.【點(diǎn)睛】利用頻率估計概率.2、B【解析】
解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點(diǎn)D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點(diǎn)睛】本題考查圓周角定理;圓心角、弧、弦的關(guān)系.3、A【解析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長等于2個正方形的邊長.則y=2x,為正比例函數(shù).故選A.4、D【解析】
A、由a=1>0,可得出拋物線開口向上,A選項(xiàng)錯誤;B、由拋物線與y軸的交點(diǎn)坐標(biāo)可得出c值,進(jìn)而可得出拋物線的解析式,令y=0求出x值,由此可得出拋物線與x軸的交點(diǎn)為(1,0)、(1,0),B選項(xiàng)錯誤;C、由拋物線開口向上,可得出y無最大值,C選項(xiàng)錯誤;D、由拋物線的解析式利用二次函數(shù)的性質(zhì),即可求出拋物線的對稱軸為直線x=-,D選項(xiàng)正確.綜上即可得出結(jié)論.【詳解】解:A、∵a=1>0,∴拋物線開口向上,A選項(xiàng)錯誤;B、∵拋物線y=x1-3x+c與y軸的交點(diǎn)為(0,1),∴c=1,∴拋物線的解析式為y=x1-3x+1.當(dāng)y=0時,有x1-3x+1=0,解得:x1=1,x1=1,∴拋物線與x軸的交點(diǎn)為(1,0)、(1,0),B選項(xiàng)錯誤;C、∵拋物線開口向上,∴y無最大值,C選項(xiàng)錯誤;D、∵拋物線的解析式為y=x1-3x+1,∴拋物線的對稱軸為直線x=-=-=,D選項(xiàng)正確.故選D.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn)、二次函數(shù)的性質(zhì)、二次函數(shù)的最值以及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,利用二次函數(shù)的性質(zhì)及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征逐一分析四個選項(xiàng)的正誤是解題的關(guān)鍵.5、D【解析】試題分析:觀察函數(shù)圖象得到當(dāng)﹣2<x<0或x>2時,正比例函數(shù)圖象都在反比例函數(shù)圖象上方,即有y=x的函數(shù)值大于y=4考點(diǎn):1.反比例函數(shù)與一次函數(shù)的交點(diǎn)問題;2.數(shù)形結(jié)合思想的應(yīng)用.6、C【解析】
設(shè)二,三月份平均每月降價的百分率為,則二月份為,三月份為,然后再依據(jù)第三個月售價為1,列出方程求解即可.【詳解】解:設(shè)二,三月份平均每月降價的百分率為.根據(jù)題意,得=1.解得,(不合題意,舍去).答:二,三月份平均每月降價的百分率為10%【點(diǎn)睛】本題主要考查一元二次方程的應(yīng)用,關(guān)于降價百分比的問題:若原數(shù)是a,每次降價的百分率為a,則第一次降價后為a(1-x);第二次降價后后為a(1-x)2,即:原數(shù)x(1-降價的百分率)2=后兩次數(shù).7、B【解析】
本題主要需要分類討論第一次摸到的球是白球還是紅球,然后再進(jìn)行計算.【詳解】①若第一次摸到的是白球,則有第一次摸到白球的概率為,第二次,摸到白球的概率為,則有;②若第一次摸到的球是紅色的,則有第一次摸到紅球的概率為,第二次摸到白球的概率為1,則有,則兩次摸到的球的顏色不同的概率為.【點(diǎn)睛】掌握分類討論的方法是本題解題的關(guān)鍵.8、B【解析】
連接BC,由網(wǎng)格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點(diǎn)睛】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關(guān)鍵.9、D【解析】分析:根據(jù)有理數(shù)的乘方、乘法和加法可以解答本題.詳解:4+(﹣2)2×5=4+4×5=4+20=24,故選:D.點(diǎn)睛:本題考查有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確有理數(shù)的混合運(yùn)算的計算方法.10、C【解析】當(dāng)⊙C與AD相切時,△ABE面積最大,連接CD,則∠CDA=90°,∵A(2,0),B(0,2),⊙C的圓心為點(diǎn)C(-1,0),半徑為1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案為C.二、填空題(共7小題,每小題3分,滿分21分)11、x(x+2)(x﹣2).【解析】試題分析:==x(x+2)(x﹣2).故答案為x(x+2)(x﹣2).考點(diǎn):提公因式法與公式法的綜合運(yùn)用;因式分解.12、4【解析】試題分析:設(shè)OB的長度為x,則根據(jù)二次函數(shù)的對稱性可得:點(diǎn)B的坐標(biāo)為(x+2,0),點(diǎn)A的坐標(biāo)為(2-x,0),則OB-OA=x+2-(x-2)=4.點(diǎn)睛:本題主要考查的就是二次函數(shù)的性質(zhì).如果二次函數(shù)與x軸的兩個交點(diǎn)坐標(biāo)為(,0)和(,0),則函數(shù)的對稱軸為直線:x=.在解決二次函數(shù)的題目時,我們一定要注意區(qū)分點(diǎn)的坐標(biāo)和線段的長度之間的區(qū)別,如果點(diǎn)在x的正半軸,則點(diǎn)的橫坐標(biāo)就是線段的長度,如果點(diǎn)在x的負(fù)半軸,則點(diǎn)的橫坐標(biāo)的相反數(shù)就是線段的長度.13、1【解析】根據(jù)平均數(shù)為10求出x的值,再由眾數(shù)的定義可得出答案.解:由題意得,(2+3+1+1+x)=10,解得:x=31,這組數(shù)據(jù)中1出現(xiàn)的次數(shù)最多,則這組數(shù)據(jù)的眾數(shù)為1.故答案為1.14、221.1.【解析】
先將這組數(shù)據(jù)從小到大排列,再找出最中間的數(shù),即可得出中位數(shù);找出這組數(shù)據(jù)中最多的數(shù)則是眾數(shù);先求出這組數(shù)據(jù)的平均數(shù),再根據(jù)方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2]進(jìn)行計算即可.【詳解】解:把這組數(shù)據(jù)從小到大排列為:2,2,2,4,5,最中間的數(shù)是2,則中位數(shù)是2;眾數(shù)為2;∵這組數(shù)據(jù)的平均數(shù)是(2+2+2+4+5)÷5=3,∴方差是:[(2?3)2+(2?3)2+(2?3)2+(4?3)2+(5?3)2]=1.1.故答案為2,2,1.1.【點(diǎn)睛】本題考查了中位數(shù)、眾數(shù)與方差的定義,解題的關(guān)鍵是熟練的掌握中位數(shù)、眾數(shù)與方差的定義.15、2【解析】∵∠ACB=90°,F(xiàn)D⊥AB,∴∠ACB=∠FDB=90°?!摺螰=30°,∴∠A=∠F=30°(同角的余角相等)。又AB的垂直平分線DE交AC于E,∴∠EBA=∠A=30°。∴Rt△DBE中,BE=2DE=2。16、9.1【解析】
建立直角坐標(biāo)系,得到二次函數(shù),門洞高度即為二次函數(shù)的頂點(diǎn)的縱坐標(biāo)【詳解】如圖,以地面為x軸,門洞中點(diǎn)為O點(diǎn),畫出y軸,建立直角坐標(biāo)系由題意可知各點(diǎn)坐標(biāo)為A(-4,0)B(4,0)D(-3,4)設(shè)拋物線解析式為y=ax2+c(a≠0)把B、D兩點(diǎn)帶入解析式可得解析式為,則C(0,)所以門洞高度為m≈9.1m【點(diǎn)睛】本題考查二次函數(shù)的簡單應(yīng)用,能夠建立直角坐標(biāo)系解出二次函數(shù)解析式是本題關(guān)鍵17、【解析】
根據(jù)題意列出表格或樹狀圖即可解答.【詳解】解:根據(jù)題意畫出樹狀圖如下:總共有9種情況,其中兩個數(shù)字之和為8的有2種情況,∴,故答案為:.【點(diǎn)睛】本題考查了概率的求解,解題的關(guān)鍵是畫出樹狀圖或列出表格,并熟記概率的計算公式.三、解答題(共7小題,滿分69分)18、(1)時,S最大為(1)(-1,1)或或或(1,-1)【解析】試題分析:(1)先假設(shè)出函數(shù)解析式,利用三點(diǎn)法求解函數(shù)解析式.(2)設(shè)出M點(diǎn)的坐標(biāo),利用S=S△AOM+S△OBM﹣S△AOB即可進(jìn)行解答;(1)當(dāng)OB是平行四邊形的邊時,表示出PQ的長,再根據(jù)平行四邊形的對邊相等列出方程求解即可;當(dāng)OB是對角線時,由圖可知點(diǎn)A與P應(yīng)該重合,即可得出結(jié)論.試題解析:解:(1)設(shè)此拋物線的函數(shù)解析式為:y=ax2+bx+c(a≠0),將A(-1,0),B(0,-1),C(1,0)三點(diǎn)代入函數(shù)解析式得:解得,所以此函數(shù)解析式為:.(2)∵M(jìn)點(diǎn)的橫坐標(biāo)為m,且點(diǎn)M在這條拋物線上,∴M點(diǎn)的坐標(biāo)為:(m,),∴S=S△AOM+S△OBM-S△AOB=×1×(-)+×1×(-m)-×1×1=-(m+)2+,當(dāng)m=-時,S有最大值為:S=-.(1)設(shè)P(x,).分兩種情況討論:①當(dāng)OB為邊時,根據(jù)平行四邊形的性質(zhì)知PB∥OQ,∴Q的橫坐標(biāo)的絕對值等于P的橫坐標(biāo)的絕對值,又∵直線的解析式為y=-x,則Q(x,-x).由PQ=OB,得:|-x-()|=1解得:x=0(不合題意,舍去),-1,,∴Q的坐標(biāo)為(-1,1)或或;②當(dāng)BO為對角線時,如圖,知A與P應(yīng)該重合,OP=1.四邊形PBQO為平行四邊形則BQ=OP=1,Q橫坐標(biāo)為1,代入y=﹣x得出Q為(1,﹣1).綜上所述:Q的坐標(biāo)為:(-1,1)或或或(1,-1).點(diǎn)睛:本題是對二次函數(shù)的綜合考查,有待定系數(shù)法求二次函數(shù)解析式,三角形的面積,二次函數(shù)的最值問題,平行四邊形的對邊相等的性質(zhì),平面直角坐標(biāo)系中兩點(diǎn)間的距離的表示,綜合性較強(qiáng),但難度不大,仔細(xì)分析便不難求解.19、(1)證明見解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.【解析】
(1)根據(jù)線段的垂直平分線的性質(zhì)以及垂徑定理證明AG=DG=DH=AH即可;
(2)只要證明△AEF∽△ACB,可得解決問題;
(3)①分三種情形分別求解即可解決問題;
②只要證明△CFG∽△HFA,可得=,求出相應(yīng)的線段即可解決問題;【詳解】(1)證明:∵GH垂直平分線段AD,∴HA=HD,GA=GD,∵AB是直徑,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四邊形AGDH是菱形.(2)解:∵AB是直徑,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∴,∴y=x2(x>0).(3)①解:如圖1中,連接DF.∵GH垂直平分線段AD,∴FA=FD,∴當(dāng)點(diǎn)D與O重合時,△AOF是等腰三角形,此時AB=2BC,∠CAB=30°,∴AB=,∴⊙O的面積為π.如圖2中,當(dāng)AF=AO時,∵AB==,∴OA=,∵AF==,∴=,解得x=4(負(fù)根已經(jīng)舍棄),∴AB=,∴⊙O的面積為8π.如圖2﹣1中,當(dāng)點(diǎn)C與點(diǎn)F重合時,設(shè)AE=x,則BC=AD=2x,AB=,∵△ACE∽△ABC,∴AC2=AE?AB,∴16=x?,解得x2=2﹣2(負(fù)根已經(jīng)舍棄),∴AB2=16+4x2=8+8,∴⊙O的面積=π??AB2=(2+2)π綜上所述,滿足條件的⊙O的面積為π或8π或(2+2)π;②如圖3中,連接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=,∴AE=,∴OE=OA﹣AE=1,∴EG=EH==,∵EF=x2=,∴FG=﹣,AF==,AH==,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴,∴,∴CG=﹣,∴CG+9=4.故答案為4.【點(diǎn)睛】本題考查圓綜合題、相似三角形的判定和性質(zhì)、垂徑定理、線段的垂直平分線的性質(zhì)、菱形的判定和性質(zhì)、勾股定理、解直角三角形等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題,學(xué)會用分類討論的思想思考問題.20、小亮說的對,理由見解析【解析】
先根據(jù)完全平方公式和去括號法則計算,再合并同類項(xiàng),最后代入計算即可求解.【詳解】2(x+1)2﹣(4x﹣5)=2x2+4x+2﹣4x+5,=2x2+7,當(dāng)x=時,原式=+7=7;當(dāng)x=﹣時,原式=+7=7.故小亮說的對.【點(diǎn)睛】本題考查完全平方公式和去括號,解題的關(guān)鍵是明確完全平方公式和去括號的計算方法.21、(1)補(bǔ)全圖形見解析;(2)B;(3)估計該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有75人,就該年級經(jīng)常隨手丟垃圾的學(xué)生人數(shù)看出仍需要加強(qiáng)公共衛(wèi)生教育、宣傳和監(jiān)督.【解析】
(1)根據(jù)被調(diào)查的總?cè)藬?shù)求出C情況的人數(shù)與B情況人數(shù)所占比例即可;(2)根據(jù)眾數(shù)的定義求解即可;(3)該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生=總?cè)藬?shù)×C情況的比值.【詳解】(1)∵被調(diào)查的總?cè)藬?shù)為60÷30%=200人,∴C情況的人數(shù)為200﹣(60+130)=10人,B情況人數(shù)所占比例為×100%=65%,補(bǔ)全圖形如下:(2)由條形圖知,B情況出現(xiàn)次數(shù)最多,所以眾數(shù)為B,故答案為B.(3)1500×5%=75,答:估計該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有75人,就該年級經(jīng)常隨手丟垃圾的學(xué)生人數(shù)看出仍需要加強(qiáng)公共衛(wèi)生教育、宣傳和監(jiān)督.【點(diǎn)睛】本題考查了眾數(shù)與扇形統(tǒng)計圖與條形統(tǒng)計圖,解題的關(guān)鍵是熟練的掌握眾數(shù)與扇形統(tǒng)計圖與條形統(tǒng)計圖的相關(guān)知識點(diǎn).22、(1)作圖見解析;(2)證明見解析.【解析】
(1)分別以A、B為圓心,以大于AB的長度為半徑畫弧,過兩弧的交點(diǎn)作直線,交AC于點(diǎn)D,AB于點(diǎn)E,直線DE就是所要作的AB邊上的中垂線;
(2)根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AD=BD,再根據(jù)等邊對等角的性質(zhì)求出∠ABD=∠A=30°,然后求出∠CBD=30°,從而得到BD平分∠CBA.【詳解】(1)解:如圖所示,DE就是要求作的AB邊上的中垂線;(2)證明:∵DE是AB邊上的中垂線,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.【點(diǎn)睛】考查線段的垂直平分線的作法以及角平分線的判定,熟練掌握線段的垂直平分弦的作法是解題的關(guān)鍵.23、2﹣【解析】試題分析:利用相反數(shù)和倒數(shù)的定義即可得出.先因式分解,再代入求出即可.試題解析:是的相反數(shù),是的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職第三學(xué)年(物聯(lián)網(wǎng)應(yīng)用)物聯(lián)網(wǎng)工程設(shè)計測試題及答案
- 2025年大學(xué)(工程造價)工程招投標(biāo)與合同管理基礎(chǔ)階段測試題及評分標(biāo)準(zhǔn)
- 2025年中職環(huán)境微生物學(xué)(微生物分析)試題及答案
- 2025年高職計算機(jī)應(yīng)用技術(shù)(應(yīng)用專題)試題及答案
- 2025年高職機(jī)電(機(jī)電設(shè)備維修)試題及答案
- 2025年大學(xué)地理信息科學(xué)(GIS軟件應(yīng)用)試題及答案
- 麥曲制曲工安全培訓(xùn)效果知識考核試卷含答案
- 煤層氣預(yù)處理值班員崗前生產(chǎn)安全意識考核試卷含答案
- 揚(yáng)聲器號筒搟制工操作安全能力考核試卷含答案
- 化學(xué)檢驗(yàn)員操作規(guī)程測試考核試卷含答案
- 管道穿越高速橋梁施工方案
- 鋼筋工安全晨會(班前會)
- 2024版《中醫(yī)基礎(chǔ)理論經(jīng)絡(luò)》課件完整版
- 游戲公司運(yùn)營風(fēng)險控制預(yù)案
- 山東省臨沂市2024-2025學(xué)年高二數(shù)學(xué)上學(xué)期期中試題
- DZ∕T 0248-2014 巖石地球化學(xué)測量技術(shù)規(guī)程(正式版)
- JTJ-T-257-1996塑料排水板質(zhì)量檢驗(yàn)標(biāo)準(zhǔn)-PDF解密
- 殘疾人法律維權(quán)知識講座
- 瀝青維護(hù)工程投標(biāo)方案技術(shù)標(biāo)
- 水電站建筑物課程設(shè)計
- 兒童行為量表(CBCL)(可打印)
評論
0/150
提交評論