河北省保定市回民中學(xué)2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第1頁
河北省保定市回民中學(xué)2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第2頁
河北省保定市回民中學(xué)2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第3頁
河北省保定市回民中學(xué)2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第4頁
河北省保定市回民中學(xué)2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河北省保定市回民中學(xué)2024屆中考數(shù)學(xué)最后沖刺模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.△ABC的三條邊長分別是5,13,12,則其外接圓半徑和內(nèi)切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,22.如圖,AB與⊙O相切于點(diǎn)A,BO與⊙O相交于點(diǎn)C,點(diǎn)D是優(yōu)弧AC上一點(diǎn),∠CDA=27°,則∠B的大小是()A.27° B.34° C.36° D.54°3.在如圖所示的正方形網(wǎng)格中,網(wǎng)格線的交點(diǎn)稱為格點(diǎn),已知A、B是兩格點(diǎn),如果C也是圖中的格點(diǎn),且使得△ABC為等腰直角三角形,則這樣的點(diǎn)C有()A.6個(gè) B.7個(gè) C.8個(gè) D.9個(gè)4.我市連續(xù)7天的最高氣溫為:28°,27°,30°,33°,30°,30°,32°,這組數(shù)據(jù)的平均數(shù)和眾數(shù)分別是()A.28°,30° B.30°,28° C.31°,30° D.30°,30°5.如圖,⊙O是△ABC的外接圓,∠B=60°,⊙O的半徑為4,則AC的長等于()A.4 B.6 C.2 D.86.如圖,在平面直角坐標(biāo)系中,直線y=k1x+2(k1≠0)與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)y=在第二象限內(nèi)的圖象交于點(diǎn)C,連接OC,若S△OBC=1,tan∠BOC=,則k2的值是()A.3 B.﹣ C.﹣3 D.﹣67.的倒數(shù)是()A. B.-3 C.3 D.8.2016年底安徽省已有13個(gè)市邁入“高鐵時(shí)代”,現(xiàn)正在建設(shè)的“合安高鐵”項(xiàng)目,計(jì)劃總投資334億元人民幣.把334億用科學(xué)記數(shù)法可表示為()A.0.334×1011B.3.34×10109.四張分別畫有平行四邊形、菱形、等邊三角形、圓的卡片,它們的背面都相同?,F(xiàn)將它們背面朝上,從中任取一張,卡片上所畫圖形恰好是中心對稱圖形的概率是()A. B.1 C. D.10.下列運(yùn)算正確的是()A.=x5 B. C.·= D.3+2二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,寬為的長方形圖案由8個(gè)相同的小長方形拼成,若小長方形的邊長為整數(shù),則的值為__________.12.已知圓錐的高為3,底面圓的直徑為8,則圓錐的側(cè)面積為_____.13.一個(gè)正n邊形的中心角等于18°,那么n=_____.14.如圖,已知AB∥CD,若,則=_____.15.因式分解:9a2﹣12a+4=______.16.如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點(diǎn)C、D,若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為______.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點(diǎn)A(m,3)、B(–6,n),與x軸交于點(diǎn)C.(1)求一次函數(shù)y=kx+b的關(guān)系式;(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;(3)若點(diǎn)P在x軸上,且S△ACP=,求點(diǎn)P的坐標(biāo).18.(8分)4月9日上午8時(shí),2017徐州國際馬拉松賽鳴槍開跑,一名歲的男子帶著他的兩個(gè)孩子一同參加了比賽,下面是兩個(gè)孩子與記者的對話:根據(jù)對話內(nèi)容,請你用方程的知識幫記者求出哥哥和妹妹的年齡.19.(8分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D,與CA的延長線相交于點(diǎn)E,過點(diǎn)D作DF⊥AC于點(diǎn)F.(1)試說明DF是⊙O的切線;(2)若AC=3AE,求tanC.20.(8分)如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),求AE的長.21.(8分)如圖1,在△ABC中,點(diǎn)P為邊AB所在直線上一點(diǎn),連結(jié)CP,M為線段CP的中點(diǎn),若滿足∠ACP=∠MBA,則稱點(diǎn)P為△ABC的“好點(diǎn)”.(1)如圖2,當(dāng)∠ABC=90°時(shí),命題“線段AB上不存在“好點(diǎn)”為(填“真”或“假”)命題,并說明理由;(2)如圖3,P是△ABC的BA延長線的一個(gè)“好點(diǎn)”,若PC=4,PB=5,求AP的值;(3)如圖4,在Rt△ABC中,∠CAB=90°,點(diǎn)P是△ABC的“好點(diǎn)”,若AC=4,AB=5,求AP的值.22.(10分)(1)解方程:=0;(2)解不等式組,并把所得解集表示在數(shù)軸上.23.(12分)某電器超市銷售每臺進(jìn)價(jià)分別為200元,170元的A,B兩種型號的電風(fēng)扇,表中是近兩周的銷售情況:銷售時(shí)段銷售數(shù)量銷售收入A種型號B種型號第一周3臺5臺1800元第二周4臺10臺3100元(進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入-進(jìn)貨成本)求A,B兩種型號的電風(fēng)扇的銷售單價(jià).若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,則A種型號的電風(fēng)扇最多能采購多少臺?在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實(shí)現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.24.如圖,在四邊形ABCD中,∠A=∠BCD=90°,,CE⊥AD于點(diǎn)E.(1)求證:AE=CE;(2)若tanD=3,求AB的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)邊長確定三角形為直角三角形,斜邊即為外切圓直徑,內(nèi)切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內(nèi)切圓半徑==2,故選D.【點(diǎn)睛】本題考查了直角三角形內(nèi)切圓和外切圓的半徑,屬于簡單題,熟悉概念是解題關(guān)鍵.2、C【解析】

由切線的性質(zhì)可知∠OAB=90°,由圓周角定理可知∠BOA=54°,根據(jù)直角三角形兩銳角互余可知∠B=36°.【詳解】解:∵AB與⊙O相切于點(diǎn)A,

∴OA⊥BA.

∴∠OAB=90°.

∵∠CDA=27°,

∴∠BOA=54°.

∴∠B=90°-54°=36°.故選C.考點(diǎn):切線的性質(zhì).3、A【解析】

根據(jù)題意,結(jié)合圖形,分兩種情況討論:①AB為等腰△ABC底邊;②AB為等腰△ABC其中的一條腰.【詳解】如圖:分情況討論:①AB為等腰直角△ABC底邊時(shí),符合條件的C點(diǎn)有2個(gè);②AB為等腰直角△ABC其中的一條腰時(shí),符合條件的C點(diǎn)有4個(gè).故選:C.【點(diǎn)睛】本題考查了等腰三角形的判定;解答本題關(guān)鍵是根據(jù)題意,畫出符合實(shí)際條件的圖形,再利用數(shù)學(xué)知識來求解.?dāng)?shù)形結(jié)合的思想是數(shù)學(xué)解題中很重要的解題思想.4、D【解析】試題分析:數(shù)據(jù)28°,27°,30°,33°,30°,30°,32°的平均數(shù)是(28+27+30+33+30+30+32)÷7=30,30出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,則眾數(shù)是30;故選D.考點(diǎn):眾數(shù);算術(shù)平均數(shù).5、A【解析】

解:連接OA,OC,過點(diǎn)O作OD⊥AC于點(diǎn)D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故選A.【點(diǎn)睛】本題考查三角形的外接圓;勾股定理;圓周角定理;垂徑定理.6、C【解析】

如圖,作CH⊥y軸于H.通過解直角三角形求出點(diǎn)C坐標(biāo)即可解決問題.【詳解】解:如圖,作CH⊥y軸于H.由題意B(0,2),∵∴CH=1,∵tan∠BOC=∴OH=3,∴C(﹣1,3),把點(diǎn)C(﹣1,3)代入,得到k2=﹣3,故選C.【點(diǎn)睛】本題考查反比例函數(shù)于一次函數(shù)的交點(diǎn)問題,銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.7、A【解析】

先求出,再求倒數(shù).【詳解】因?yàn)樗缘牡箶?shù)是故選A【點(diǎn)睛】考核知識點(diǎn):絕對值,相反數(shù),倒數(shù).8、B【解析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).解:334億=3.34×1010“點(diǎn)睛”此題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.9、A【解析】∵在:平行四邊形、菱形、等邊三角形和圓這4個(gè)圖形中屬于中心對稱圖形的有:平行四邊形、菱形和圓三種,∴從四張卡片中任取一張,恰好是中心對稱圖形的概率=.故選A.10、B【解析】

根據(jù)冪的運(yùn)算法則及整式的加減運(yùn)算即可判斷.【詳解】A.=x6,故錯(cuò)誤;B.,正確;C.·=,故錯(cuò)誤;D.3+2不能合并,故錯(cuò)誤,故選B.【點(diǎn)睛】此題主要考查整式的加減及冪的運(yùn)算,解題的關(guān)鍵是熟知其運(yùn)算法則.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、16【解析】

設(shè)小長方形的寬為a,長為b,根據(jù)大長方形的性質(zhì)可得5a=3b,m=a+b=a+=,再根據(jù)m的取值范圍即可求出a的取值范圍,又因?yàn)樾¢L方形的邊長為整數(shù)即可解答.【詳解】解:設(shè)小長方形的寬為a,長為b,由題意得:5a=3b,所以b=,m=a+b=a+=,因?yàn)?,所?0<<20,解得:<a<,又因?yàn)樾¢L方形的邊長為整數(shù),a=4、5、6、7,因?yàn)閎=,所以5a是3的倍數(shù),即a=6,b==10,m=a+b=16.故答案為:16.【點(diǎn)睛】本題考查整式的列式、取值,解題關(guān)鍵是根據(jù)矩形找出小長方形的邊長關(guān)系.12、20π【解析】

利用勾股定理可求得圓錐的母線長,然后根據(jù)圓錐的側(cè)面積公式進(jìn)行計(jì)算即可.【詳解】底面直徑為8,底面半徑=4,底面周長=8π,由勾股定理得,母線長==5,故圓錐的側(cè)面積=×8π×5=20π,故答案為:20π.【點(diǎn)睛】本題主要考查了圓錐的側(cè)面積的計(jì)算方法.解題的關(guān)鍵是熟記圓錐的側(cè)面展開扇形的面積計(jì)算方法.13、20【解析】

由正n邊形的中心角為18°,可得方程18n=360,解方程即可求得答案.【詳解】∵正n邊形的中心角為18°,∴18n=360,∴n=20.故答案為20.【點(diǎn)睛】本題考查的知識點(diǎn)是正多邊形和圓,解題的關(guān)鍵是熟練的掌握正多邊形和圓.14、【解析】【分析】利用相似三角形的性質(zhì)即可解決問題;【詳解】∵AB∥CD,∴△AOB∽△COD,∴,故答案為.【點(diǎn)睛】本題考查平行線的性質(zhì),相似三角形的判定和性質(zhì)等知識,熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.15、(3a﹣1)1【解析】

直接利用完全平方公式分解因式得出答案.【詳解】9a1-11a+4=(3a-1)1.故答案是:(3a﹣1)1.【點(diǎn)睛】考查了公式法分解因式,正確運(yùn)用公式是解題關(guān)鍵.16、【解析】

過點(diǎn)D作DF⊥BC于點(diǎn)F,由菱形的性質(zhì)可得BC=CD,AD∥BC,可證四邊形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函數(shù)的性質(zhì)可求k的值.【詳解】如圖,過點(diǎn)D作DF⊥BC于點(diǎn)F,∵四邊形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四邊形DEBF是矩形,∴DF=BE,DE=BF,∵點(diǎn)C的橫坐標(biāo)為5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,設(shè)點(diǎn)C(5,m),點(diǎn)D(1,m+3),∵反比例函數(shù)y=圖象過點(diǎn)C,D,∴5m=1×(m+3),∴m=,∴點(diǎn)C(5,),∴k=5×=,故答案為:【點(diǎn)睛】本題考查了反比例函數(shù)圖象點(diǎn)的坐標(biāo)特征,菱形的性質(zhì),勾股定理,求出DE的長度是本題的關(guān)鍵.三、解答題(共8題,共72分)17、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解析】

(1)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、B的坐標(biāo),再利用待定系數(shù)法即可求出直線AB的解析式;(1)根據(jù)函數(shù)圖像判斷即可;(3)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出結(jié)論.【詳解】(1)∵點(diǎn)A(m,3),B(-6,n)在雙曲線y=上,∴m=1,n=-1,∴A(1,3),B(-6,-1).將(1,3),B(-6,-1)帶入y=kx+b,得:,解得,.∴直線的解析式為y=x+1.(1)由函數(shù)圖像可知,當(dāng)kx+b>時(shí),-6<x<0或1<x;(3)當(dāng)y=x+1=0時(shí),x=-4,∴點(diǎn)C(-4,0).設(shè)點(diǎn)P的坐標(biāo)為(x,0),如圖,∵S△ACP=S△BOC,A(1,3),B(-6,-1),∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴點(diǎn)P的坐標(biāo)為(-6,0)或(-1,0).【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題、一次(反比例)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)解析式以及三角形的面積,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo)利用待定系數(shù)法求出直線AB的解析式;(1)根據(jù)函數(shù)圖像判斷不等式取值范圍;(3)根據(jù)三角形的面積公式以及S△ACP=S△BOC,得出|x+4|=1.18、今年妹妹6歲,哥哥10歲.【解析】

試題分析:設(shè)今年妹妹的年齡為x歲,哥哥的年齡為y歲,根據(jù)兩個(gè)孩子的對話,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論.試題解析:設(shè)今年妹妹的年齡為x歲,哥哥的年齡為y歲,根據(jù)題意得:解得:.答:今年妹妹6歲,哥哥10歲.考點(diǎn):二元一次方程組的應(yīng)用.19、(1)詳見解析;(2)【解析】

(1)連接OD,根據(jù)等邊對等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,證得OD∥AC,證得OD⊥DF,從而證得DF是⊙O的切線;(2)連接BE,AB是直徑,∠AEB=90°,根據(jù)勾股定理得出BE=2AE,CE=4AE,然后在Rt△BEC中,即可求得tanC的值.【詳解】(1)連接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切線;(2)連接BE,∵AB是直徑,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE=,在RT△BEC中,tanC=.20、(1);(2)詳見解析;(3)AE=.【解析】

(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對應(yīng)邊成比例,證得OG?OB=OE2,再利用OB與BD的關(guān)系,OE與EF的關(guān)系,即可證得結(jié)論;(3)首先設(shè)AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問題,求得AE的長.【詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過點(diǎn)O作OH⊥BC,∵BC=1,∴設(shè)AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當(dāng)時(shí),S△BEF+S△COF最大;即在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),【點(diǎn)睛】本題屬于四邊形的綜合題,主要考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理以及二次函數(shù)的最值問題.注意掌握轉(zhuǎn)化思想的應(yīng)用是解此題的關(guān)鍵.21、(1)真;(2);(3)或或.【解析】

(1)先根據(jù)直角三角形斜邊的中線等于斜邊的一半可知MP=MB,從而∠MPB=∠MBP,然后根據(jù)三角形外角的性質(zhì)說明即可;(2)先證明△PAC∽△PMB,然后根據(jù)相似三角形的性質(zhì)求解即可;(3)分三種情況求解:P為線段AB上的“好點(diǎn)”,P為線段AB延長線上的“好點(diǎn)”,P為線段BA延長線上的“好點(diǎn)”.【詳解】(1)真.理由如下:如圖,當(dāng)∠ABC=90°時(shí),M為PC中點(diǎn),BM=PM,則∠MPB=∠MBP>∠ACP,所以在線段AB上不存在“好點(diǎn)”;(2)∵P為BA延長線上一個(gè)“好點(diǎn)”;∴∠ACP=∠MBP;∴△PAC∽△PMB;∴即;∵M(jìn)為PC中點(diǎn),∴MP=2;∴;∴.(3)第一種情況,P為線段AB上的“好點(diǎn)”,則∠ACP=∠MBA,找AP中點(diǎn)D,連結(jié)MD;∵M(jìn)為CP中點(diǎn);∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM;∴DM2=DP·DB即4=DP·(5DP);解得DP=1,DP=4(不在AB邊上,舍去;)∴AP=2第二種情況(1),P為線段AB延長線上的“好點(diǎn)”,則∠ACP=∠MBA,找AP中點(diǎn)D,此時(shí),D在線段AB上,如圖,連結(jié)MD;∵M(jìn)為CP中點(diǎn);∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM∴DM2=DP·DB即4=DP·(5DA)=DP·(5DP);解得DP=1(不在AB延長線上,舍去),DP=4∴AP=8;第二種情況(2),P為線段AB延長線上的“好點(diǎn)”,找AP中點(diǎn)D,此時(shí),D在AB延長線上,如圖,連結(jié)MD;此時(shí),∠MBA>∠MDB>∠DMP=∠ACP,則這種情況不存在,舍去;第三種情況,P為線段BA延長線上的“好點(diǎn)”,則∠ACP=∠MBA,∴△PAC∽△PMB;∴∴BM垂直平分PC則BC=BP=;∴∴綜上所述,或或;【點(diǎn)睛】本題考查了信息遷移,三角形外角的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,相似三角形的判定與性質(zhì)及分類討論的數(shù)學(xué)思想,理解“好點(diǎn)”的定義并能進(jìn)行分類討論是解答本題的關(guān)鍵.22、(1)x=;(2)x>3;數(shù)軸見解析;【解析】

(1)先把分式方程轉(zhuǎn)化成整式方程,求出方程的解,再進(jìn)行檢驗(yàn)即可;(2)先求出每個(gè)不等式的解集,再求出不等式組的解集即可.【詳解】解:(1)方程兩邊都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,解得:檢驗(yàn):當(dāng)時(shí),(1﹣2x)(x+2)≠0,所以是原方程的解,所以原方程的解是;(2),∵解不等式①得:x>1,解不等式②得:x>3,∴不等式組的解集為x>3,在數(shù)軸上表示為:.【點(diǎn)睛】本題考查了解分式方程和解一元一次不等式組、在數(shù)軸上表示不等式組的解集等知識點(diǎn),能把分式方程轉(zhuǎn)化成整式方程是解(1)的關(guān)鍵,能根據(jù)不等式的解集得出不等式組的解集是解(2)的關(guān)鍵.23、(1)A,B兩種型號電風(fēng)扇的銷售單價(jià)分別為250元/臺、210元/臺;(2)A種型號的電風(fēng)扇最多能采購10臺;(3)在(2)的條件下超市不能實(shí)現(xiàn)利潤為1400元的目標(biāo).【解析】

(1)設(shè)A、B兩種型號電風(fēng)扇的銷售單價(jià)分別為x元、y元,根據(jù)3臺A型號5臺B型號的電扇收入1800元,4臺A型號10臺B型號的電扇收入3100元,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論