青海省海西重點(diǎn)名校2022年中考試題猜想數(shù)學(xué)試卷含解析_第1頁
青海省海西重點(diǎn)名校2022年中考試題猜想數(shù)學(xué)試卷含解析_第2頁
青海省海西重點(diǎn)名校2022年中考試題猜想數(shù)學(xué)試卷含解析_第3頁
青海省海西重點(diǎn)名校2022年中考試題猜想數(shù)學(xué)試卷含解析_第4頁
青海省海西重點(diǎn)名校2022年中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

青海省海西重點(diǎn)名校2022年中考試題猜想數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在一個不透明的袋子里裝有兩個黃球和一個白球,它們除顏色外都相同,隨機(jī)從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機(jī)摸出一個球.兩次都摸到黃球的概率是()A. B. C. D.2.下列命題是真命題的個數(shù)有()①菱形的對角線互相垂直;②平分弦的直徑垂直于弦;③若點(diǎn)(5,﹣5)是反比例函數(shù)y=圖象上的一點(diǎn),則k=﹣25;④方程2x﹣1=3x﹣2的解,可看作直線y=2x﹣1與直線y=3x﹣2交點(diǎn)的橫坐標(biāo).A.1個 B.2個 C.3個 D.4個3.已知:a、b是不等于0的實(shí)數(shù),2a=3b,那么下列等式中正確的是()A.a(chǎn)b=23 B.a(chǎn)4.如圖,若△ABC內(nèi)接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長為()A. B. C. D.5.小亮家1月至10月的用電量統(tǒng)計(jì)如圖所示,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()A.30和20B.30和25C.30和22.5D.30和17.56.如圖直線y=mx與雙曲線y=交于點(diǎn)A、B,過A作AM⊥x軸于M點(diǎn),連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.47.若正比例函數(shù)y=kx的圖象上一點(diǎn)(除原點(diǎn)外)到x軸的距離與到y(tǒng)軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.38.若關(guān)于x的一元二次方程ax2+2x﹣5=0的兩根中有且僅有一根在0和1之間(不含0和1),則a的取值范圍是()A.a(chǎn)<3B.a(chǎn)>3C.a(chǎn)<﹣3D.a(chǎn)>﹣39.函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點(diǎn),則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣210.如圖,將甲、乙、丙、丁四個小正方形中的一個剪掉,使余下的部分不能圍成一個正方體,剪掉的這個小正方形是A.甲 B.乙C.丙 D.丁二、填空題(本大題共6個小題,每小題3分,共18分)11.同圓中,已知弧AB所對的圓心角是100°,則弧AB所對的圓周角是_____.12.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達(dá)小島的北偏西45°的C處,則該船行駛的速度為____________海里/時.13.一個圓錐的高為3,側(cè)面展開圖是半圓,則圓錐的側(cè)面積是_________14.計(jì)算:2tan15.同時拋擲兩枚質(zhì)地均勻的骰子,則事件“兩枚骰子的點(diǎn)數(shù)和小于8且為偶數(shù)”的概率是.16.2018年貴州省公務(wù)員、人民警察、基層培養(yǎng)項(xiàng)目和選調(diào)生報(bào)名人數(shù)約40.2萬人,40.2萬人用科學(xué)記數(shù)法表示為_____人.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點(diǎn)E.求證:DE=CE.若∠CDE=35°,求∠A的度數(shù).18.(8分)如圖,在△ABC中,AB=BC,CD⊥AB于點(diǎn)D,CD=BD.BE平分∠ABC,點(diǎn)H是BC邊的中點(diǎn).連接DH,交BE于點(diǎn)G.連接CG.(1)求證:△ADC≌△FDB;(2)求證:(3)判斷△ECG的形狀,并證明你的結(jié)論.19.(8分)如圖,在△OAB中,OA=OB,C為AB中點(diǎn),以O(shè)為圓心,OC長為半徑作圓,AO與⊙O交于點(diǎn)E,OB與⊙O交于點(diǎn)F和D,連接EF,CF,CF與OA交于點(diǎn)G(1)求證:直線AB是⊙O的切線;(2)求證:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.20.(8分)如圖,已知AB是圓O的直徑,F(xiàn)是圓O上一點(diǎn),∠BAF的平分線交⊙O于點(diǎn)E,交⊙O的切線BC于點(diǎn)C,過點(diǎn)E作ED⊥AF,交AF的延長線于點(diǎn)D.求證:DE是⊙O的切線;若DE=3,CE=2.①求的值;②若點(diǎn)G為AE上一點(diǎn),求OG+EG最小值.21.(8分)如圖,在菱形ABCD中,,點(diǎn)E在對角線BD上.將線段CE繞點(diǎn)C順時針旋轉(zhuǎn),得到CF,連接DF.(1)求證:BE=DF;(2)連接AC,若EB=EC,求證:.22.(10分)先化簡,再求值:,其中a=+1.23.(12分)解方程24.如圖,已知四邊形ABCD是平行四邊形,延長BA至點(diǎn)E,使AE=AB,連接DE,AC(1)求證:四邊形ACDE為平行四邊形;(2)連接CE交AD于點(diǎn)O,若AC=AB=3,cosB=,求線段CE的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結(jié)果與兩次都摸到黃球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實(shí)驗(yàn).【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結(jié)果,其中兩次都摸到黃球的有4種結(jié)果,∴兩次都摸到黃球的概率為,故選A.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).2、C【解析】

根據(jù)菱形的性質(zhì)、垂徑定理、反比例函數(shù)和一次函數(shù)進(jìn)行判斷即可.【詳解】解:①菱形的對角線互相垂直是真命題;②平分弦(非直徑)的直徑垂直于弦,是假命題;③若點(diǎn)(5,-5)是反比例函數(shù)y=圖象上的一點(diǎn),則k=-25,是真命題;④方程2x-1=3x-2的解,可看作直線y=2x-1與直線y=3x-2交點(diǎn)的橫坐標(biāo),是真命題;故選C.【點(diǎn)睛】本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設(shè)和結(jié)論兩部分組成,題設(shè)是已知事項(xiàng),結(jié)論是由已知事項(xiàng)推出的事項(xiàng),一個命題可以寫成“如果…那么…”形式.一些命題的正確性是用推理證實(shí)的,這樣的真命題叫做定理.3、B【解析】∵2a=3b,∴ab=3故選B.4、D【解析】

延長BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據(jù)銳角三角函數(shù)的定義得BC=R.【詳解】解:延長BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.【點(diǎn)睛】此題綜合運(yùn)用了圓周角定理、直角三角形30°角的性質(zhì)、勾股定理,注意:作直徑構(gòu)造直角三角形是解決本題的關(guān)鍵.5、C【解析】

將折線統(tǒng)計(jì)圖中的數(shù)據(jù)從小到大重新排列后,根據(jù)中位數(shù)和眾數(shù)的定義求解可得.【詳解】將這10個數(shù)據(jù)從小到大重新排列為:10、15、15、20、20、25、25、30、30、30,所以該組數(shù)據(jù)的眾數(shù)為30、中位數(shù)為20+252故選:C.【點(diǎn)睛】此題考查了眾數(shù)與中位數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.6、B【解析】

此題可根據(jù)反比例函數(shù)圖象的對稱性得到A、B兩點(diǎn)關(guān)于原點(diǎn)對稱,再由S△ABM=1S△AOM并結(jié)合反比例函數(shù)系數(shù)k的幾何意義得到k的值.【詳解】根據(jù)雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數(shù)圖象位于一三象限,k>0,所以k=1.故選B.【點(diǎn)睛】本題主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點(diǎn)引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點(diǎn).7、B【解析】

設(shè)該點(diǎn)的坐標(biāo)為(a,b),則|b|=1|a|,利用一次函數(shù)圖象上的點(diǎn)的坐標(biāo)特征可得出k=±1,再利用正比例函數(shù)的性質(zhì)可得出k=-1,此題得解.【詳解】設(shè)該點(diǎn)的坐標(biāo)為(a,b),則|b|=1|a|,∵點(diǎn)(a,b)在正比例函數(shù)y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及正比例函數(shù)的性質(zhì),利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,找出k=±1是解題的關(guān)鍵.8、B【解析】試題分析:當(dāng)x=0時,y=-5;當(dāng)x=1時,y=a-1,函數(shù)與x軸在0和1之間有一個交點(diǎn),則a-1>0,解得:a>1.考點(diǎn):一元二次方程與函數(shù)9、C【解析】

根據(jù)函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點(diǎn),利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點(diǎn),∴當(dāng)m=0時,y=2x+1,此時y=0時,x=﹣0.5,該函數(shù)與x軸有一個交點(diǎn),當(dāng)m≠0時,函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點(diǎn),則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點(diǎn)睛】本題考查拋物線與x軸的交點(diǎn),解答本題的關(guān)鍵是明確題意,利用分類討論的數(shù)學(xué)思想解答.10、D【解析】解:將如圖所示的圖形剪去一個小正方形,使余下的部分不能圍成一個正方體,編號為甲乙丙丁的小正方形中剪去的是丁.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、50°【解析】【分析】直接利用圓周角定理進(jìn)行求解即可.【詳解】∵弧AB所對的圓心角是100°,∴弧AB所對的圓周角為50°,故答案為:50°.【點(diǎn)睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.12、【解析】

設(shè)該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【詳解】如圖所示:該船行駛的速度為x海里/時,3小時后到達(dá)小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時;故答案為:.【點(diǎn)睛】本題考查的是解直角三角形,熟練掌握方向角是解題的關(guān)鍵.13、18π【解析】解:設(shè)圓錐的半徑為,母線長為.則解得14、3+3【解析】

本題涉及零指數(shù)冪、負(fù)指數(shù)冪、絕對值、特殊角的三角函數(shù)值4個考點(diǎn).在計(jì)算時,需要針對每個考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果.【詳解】原式=2×3+2﹣3+1,=23+2﹣3+1,=3+3.【點(diǎn)睛】本題主要考查了實(shí)數(shù)的綜合運(yùn)算能力,是各地中考題中常見的計(jì)算題型.解決此類題目的關(guān)鍵是熟練掌握負(fù)整數(shù)指數(shù)冪、零指數(shù)冪、特殊角的三角函數(shù)、絕對值等考點(diǎn)的運(yùn)算15、.【解析】試題分析:畫樹狀圖為:共有36種等可能的結(jié)果數(shù),其中“兩枚骰子的點(diǎn)數(shù)和小于8且為偶數(shù)”的結(jié)果數(shù)為9,所以“兩枚骰子的點(diǎn)數(shù)和小于8且為偶數(shù)”的概率==.故答案為.考點(diǎn):列表法與樹狀圖法.16、4.02×1.【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:40.2萬=4.02×1,故答案為:4.02×1.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.三、解答題(共8題,共72分)17、(1)見解析;(2)40°.【解析】

(1)根據(jù)角平分線的性質(zhì)可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,進(jìn)而可得出∠EDC=∠ECD,再利用等角對等邊即可證出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,進(jìn)而可得出∠ACB=2∠ECD=70°,再根據(jù)等腰三角形的性質(zhì)結(jié)合三角形內(nèi)角和定理即可求出∠A的度數(shù).【詳解】(1)∵CD是∠ACB的平分線,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【點(diǎn)睛】本題考查了等腰三角形的判定與性質(zhì)、平行線的性質(zhì)以及角平分線.解題的關(guān)鍵是:(1)根據(jù)平行線的性質(zhì)結(jié)合角平分線的性質(zhì)找出∠EDC=∠ECD;(2)利用角平分線的性質(zhì)結(jié)合等腰三角形的性質(zhì)求出∠ACB=∠ABC=70°.18、(1)詳見解析;(2)詳見解析;(3)詳見解析.【解析】

(1)首先根據(jù)AB=BC,BE平分∠ABC,得到BE⊥AC,CE=AE,進(jìn)一步得到∠ACD=∠DBF,結(jié)合CD=BD,即可證明出△ADC≌△FDB;(2)由△ADC≌△FDB得到AC=BF,結(jié)合CE=AE,即可證明出結(jié)論;(3)由點(diǎn)H是BC邊的中點(diǎn),得到GH垂直平分BC,即GC=GB,由∠DBF=∠GBC=∠GCB=∠ECF,得∠ECO=45°,結(jié)合BE⊥AC,即可判斷出△ECG的形狀.【詳解】解:(1)∵AB=BC,BE平分∠ABC∴BE⊥AC∵CD⊥AB∴∠ACD=∠ABE(同角的余角相等)又∵CD=BD∴△ADC≌△FDB(2)∵AB=BC,BE平分∠ABC∴AE=CE則CE=AC由(1)知:△ADC≌△FDB∴AC=BF∴CE=BF(3)△ECG為等腰直角三角形,理由如下:由點(diǎn)H是BC的中點(diǎn),得GH垂直平分BC,從而有CG=BG,則∠EGC=2∠CBG=∠ABC=45°,又∵BE⊥AC,故△ECG為等腰直角三角形.【點(diǎn)睛】本題主要考查全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),解答本題的關(guān)鍵是熟練掌握全等三角形的判定,此題難度不是很大.19、(1)見解析;(2)見解析;(3).【解析】

(1)利用等腰三角形的性質(zhì),證明OC⊥AB即可;

(2)證明OC∥EG,推出△GOC∽△GEF即可解決問題;

(3)根據(jù)勾股定理和三角函數(shù)解答即可.【詳解】證明:(1)∵OA=OB,AC=BC,∴OC⊥AB,∴⊙O是AB的切線.(2)∵OA=OB,AC=BC,∴∠AOC=∠BOC,∵OE=OF,∴∠OFE=∠OEF,∵∠AOB=∠OFE+∠OEF,∴∠AOC=∠OEF,∴OC∥EF,∴△GOC∽△GEF,∴,∵OD=OC,∴OD?EG=OG?EF.(3)∵AB=4BD,∴BC=2BD,設(shè)BD=m,BC=2m,OC=OD=r,在Rt△BOC中,∵OB2=OC2+BC2,即(r+m)2=r2+(2m)2,解得:r=1.5m,OB=2.5m,∴sinA=sinB=.【點(diǎn)睛】考查圓的綜合題,考查切線的判定、等腰三角形的性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題.20、(1)證明見解析(2)①②3【解析】

(1)作輔助線,連接OE.根據(jù)切線的判定定理,只需證DE⊥OE即可;(2)①連接BE.根據(jù)BC、DE兩切線的性質(zhì)證明△ADE∽△BEC;又由角平分線的性質(zhì)、等腰三角形的兩個底角相等求得△ABE∽△AFD,所以;②連接OF,交AD于H,由①得∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,故四邊形AOEF是菱形,由對稱性可知GO=GF,過點(diǎn)G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據(jù)兩點(diǎn)之間線段最短,當(dāng)F、G、M三點(diǎn)共線,OG+EG=GF+GM=FM最小,此時FM=3.故OG+EG最小值是3.【詳解】(1)連接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切線(2)①解:連接BE∵直徑AB∴∠AEB=90°∵圓O與BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴②連接OF,交AE于G,由①,設(shè)BC=2x,則AE=3x∵△BEC∽△ABC∴∴解得:x1=2,(不合題意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=,∠BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,∴四邊形AOEF是菱形由對稱性可知GO=GF,過點(diǎn)G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據(jù)兩點(diǎn)之間線段最短,當(dāng)F、G、M三點(diǎn)共線,OG+EG=GF+GM=FM最小,此時FM=FOsin60o=3.故OG+EG最小值是3.【點(diǎn)睛】本題考查了切線的性質(zhì)、相似三角形的判定與性質(zhì).比較復(fù)雜,解答此題的關(guān)鍵是作出輔助線,利用數(shù)形結(jié)合解答.21、證明見解析【解析】【分析】(1)根據(jù)菱形的性質(zhì)可得BC=DC,,再根據(jù),從而可得,繼而得=,由旋轉(zhuǎn)的性質(zhì)可得=,證明≌,即可證得=;(2)根據(jù)菱形的對角線的性質(zhì)可得,,從而得,由,可得,由(1)可知,可推得,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論