版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省新吳區(qū)2024年中考數(shù)學最后沖刺模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示的幾何體,它的左視圖是()A. B. C. D.2.某校為了了解七年級女同學的800米跑步情況,隨機抽取部分女同學進行800米跑測試,按照成績分為優(yōu)秀、良好、合格、不合格四個等級,繪制了如圖所示統(tǒng)計圖.該校七年級有400名女生,則估計800米跑不合格的約有()A.2人 B.16人C.20人 D.40人3.如圖,矩形ABCD的頂點A、C分別在直線a、b上,且a∥b,∠1=60°,則∠2的度數(shù)為()A.30° B.45° C.60° D.75°4.如果,那么的值為()A.1 B.2 C. D.5.關于的方程有實數(shù)根,則滿足()A. B.且 C.且 D.6.如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當﹣1<x<3時,y>0,其中正確的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤7.下列二次根式中,最簡二次根式的是()A. B. C. D.8.將不等式組的解集在數(shù)軸上表示,下列表示中正確的是()A. B. C. D.9.初三(1)班的座位表如圖所示,如果如圖所示建立平面直角坐標系,并且“過道也占一個位置”,例如小王所對應的坐標為(3,2),小芳的為(5,1),小明的為(10,2),那么小李所對應的坐標是()A.(6,3) B.(6,4) C.(7,4) D.(8,4)10.下列圖標中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知x+y=,xy=,則x2y+xy2的值為____.12.已知點P是線段AB的黃金分割點,PA>PB,AB=4cm,則PA=____cm.13.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.14.拋物線y=x2﹣2x+m與x軸只有一個交點,則m的值為_____.15.在3×3方格上做填字游戲,要求每行每列及對角線上三個方格中的數(shù)字和都相等,若填在圖中的數(shù)字如圖所示,則x+y的值是_____.2x32y﹣34y16.將點P(﹣1,3)繞原點順時針旋轉180°后坐標變?yōu)開____.三、解答題(共8題,共72分)17.(8分)已知:如圖,△MNQ中,MQ≠NQ.(1)請你以MN為一邊,在MN的同側構造一個與△MNQ全等的三角形,畫出圖形,并簡要說明構造的方法;(2)參考(1)中構造全等三角形的方法解決下面問題:如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.18.(8分)如圖,已知一次函數(shù)y=x﹣3與反比例函數(shù)的圖象相交于點A(4,n),與軸相交于點B.填空:n的值為,k的值為;以AB為邊作菱形ABCD,使點C在軸正半軸上,點D在第一象限,求點D的坐標;考察反比函數(shù)的圖象,當時,請直接寫出自變量的取值范圍.19.(8分)如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)y=mx與y=n(1)當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數(shù)表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由.20.(8分)如圖,已知A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個交點.(1)若a=1,求反比例函數(shù)的解析式及b的值;(2)在(1)的條件下,根據(jù)圖象直接回答:當x取何值時,反比例函數(shù)大于一次函數(shù)的值?(3)若a﹣b=4,求一次函數(shù)的函數(shù)解析式.21.(8分)如圖,現(xiàn)有一塊鋼板余料,它是矩形缺了一角,.王師傅準備從這塊余料中裁出一個矩形(為線段上一動點).設,矩形的面積為.(1)求與之間的函數(shù)關系式,并注明的取值范圍;(2)為何值時,取最大值?最大值是多少?22.(10分)如圖,在平面直角坐標系中,點A和點C分別在x軸和y軸的正半軸上,OA=6,OC=4,以OA,OC為鄰邊作矩形OABC,動點M,N以每秒1個單位長度的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.(1)直接寫出點B的坐標為,直線OB的函數(shù)表達式為;(2)記△OMP的面積為S,求S與t的函數(shù)關系式;并求t為何值時,S有最大值,并求出最大值.23.(12分)在正方形ABCD中,動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.(1)如圖1,當點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數(shù)量關系和位置關系,并說明理由;(2)如圖2,當E,F(xiàn)分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,請你直接寫出△ACE為等腰三角形時CE:CD的值;(3)如圖3,當E,F(xiàn)分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F(xiàn)的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.24.如圖,在中,,是邊上的高線,平分交于點,經過,兩點的交于點,交于點,為的直徑.(1)求證:是的切線;(2)當,時,求的半徑.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
從左面觀察幾何體,能夠看到的線用實線,看不到的線用虛線.【詳解】從左邊看是等寬的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,
故選:A.【點睛】本題主要考查的是幾何體的三視圖,熟練掌握三視圖的畫法是解題的關鍵.2、C【解析】
先求出800米跑不合格的百分率,再根據(jù)用樣本估計總體求出估值.【詳解】400×人.故選C.【點睛】考查了頻率分布直方圖,以及用樣本估計總體,關鍵是從上面可得到具體的值.3、C【解析】試題分析:過點D作DE∥a,∵四邊形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故選C.考點:1矩形;2平行線的性質.4、D【解析】
先對原分式進行化簡,再尋找化簡結果與已知之間的關系即可得出答案.【詳解】故選:D.【點睛】本題主要考查分式的化簡求值,掌握分式的基本性質是解題的關鍵.5、A【解析】
分類討論:當a=5時,原方程變形一元一次方程,有一個實數(shù)解;當a≠5時,根據(jù)判別式的意義得到a≥1且a≠5時,方程有兩個實數(shù)根,然后綜合兩種情況即可得到滿足條件的a的范圍.【詳解】當a=5時,原方程變形為-4x-1=0,解得x=-;當a≠5時,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5時,方程有兩個實數(shù)根,所以a的取值范圍為a≥1.故選A.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.也考查了一元二次方程的定義.6、A【解析】
由拋物線的開口方向判斷a與2的關系,由拋物線與y軸的交點判斷c與2的關系,然后根據(jù)對稱軸判定b與2的關系以及2a+b=2;當x=﹣1時,y=a﹣b+c;然后由圖象確定當x取何值時,y>2.【詳解】①∵對稱軸在y軸右側,∴a、b異號,∴ab<2,故正確;②∵對稱軸∴2a+b=2;故正確;③∵2a+b=2,∴b=﹣2a,∵當x=﹣1時,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故錯誤;④根據(jù)圖示知,當m=1時,有最大值;當m≠1時,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m為實數(shù)).故正確.⑤如圖,當﹣1<x<3時,y不只是大于2.故錯誤.故選A.【點睛】本題主要考查了二次函數(shù)圖象與系數(shù)的關系,關鍵是熟練掌握①二次項系數(shù)a決定拋物線的開口方向,當a>2時,拋物線向上開口;當a<2時,拋物線向下開口;②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>2),對稱軸在y軸左;當a與b異號時(即ab<2),對稱軸在y軸右.(簡稱:左同右異)③常數(shù)項c決定拋物線與y軸交點,拋物線與y軸交于(2,c).7、C【解析】
判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、=,被開方數(shù)含分母,不是最簡二次根式;故A選項錯誤;B、=,被開方數(shù)為小數(shù),不是最簡二次根式;故B選項錯誤;C、,是最簡二次根式;故C選項正確;D.=,被開方數(shù),含能開得盡方的因數(shù)或因式,故D選項錯誤;故選C.考點:最簡二次根式.8、B【解析】先解不等式組中的每一個不等式,再把不等式的解集表示在數(shù)軸上即可.解:不等式可化為:,即.
∴在數(shù)軸上可表示為.故選B.“點睛”不等式組的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.9、C【解析】
根據(jù)題意知小李所對應的坐標是(7,4).故選C.10、D【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的概念,可知:A既不是軸對稱圖形,也不是中心對稱圖形,故不正確;B不是軸對稱圖形,但是中心對稱圖形,故不正確;C是軸對稱圖形,但不是中心對稱圖形,故不正確;D即是軸對稱圖形,也是中心對稱圖形,故正確.故選D.考點:軸對稱圖形和中心對稱圖形識別二、填空題(本大題共6個小題,每小題3分,共18分)11、3【解析】分析:因式分解,把已知整體代入求解.詳解:x2y+xy2=xy(x+y)=3.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應用,訓練將一個式子看做一個整體,利用上述方法因式分解的能力.12、2-2【解析】
根據(jù)黃金分割點的定義,知AP是較長線段;則AP=AB,代入運算即可.【詳解】解:由于P為線段AB=4的黃金分割點,且AP是較長線段;則AP=4×=cm,故答案為:(2-2)cm.【點睛】此題考查了黃金分割的定義,應該識記黃金分割的公式:較短的線段=原線段的,難度一般.13、1【解析】
根據(jù)相似三角形的對應邊的比相等列出比例式,計算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【點睛】本題考查的是相似三角形的性質,掌握相似三角形的對應邊的比相等是解題的關鍵.14、1【解析】
由拋物線y=x2-2x+m與x軸只有一個交點可知,對應的一元二次方程x2-2x+m=2,根的判別式△=b2-4ac=2,由此即可得到關于m的方程,解方程即可求得m的值.【詳解】解:∵拋物線y=x2﹣2x+m與x軸只有一個交點,∴△=2,∴b2﹣4ac=22﹣4×1×m=2;∴m=1.故答案為1.【點睛】本題考查了拋物線與x軸的交點問題,注:①拋物線與x軸有兩個交點,則△>2;②拋物線與x軸無交點,則△<2;③拋物線與x軸有一個交點,則△=2.15、0【解析】
根據(jù)題意列出方程組,求出方程組的解即可得到結果.【詳解】解:根據(jù)題意得:,即,解得:,則x+y=﹣1+1=0,故答案為0【點睛】此題考查了解二元一次方程組,熟練掌握運算法則是解本題的關鍵.16、(1,﹣3)【解析】
畫出平面直角坐標系,然后作出點P繞原點O順時針旋轉180°的點P′的位置,再根據(jù)平面直角坐標系寫出坐標即可.【詳解】如圖所示:點P(-1,3)繞原點O順時針旋轉180°后的對應點P′的坐標為(1,-3).
故答案是:(1,-3).【點睛】考查了坐標與圖形變化-旋轉,作出圖形,利用數(shù)形結合的思想求解更簡便,形象直觀.三、解答題(共8題,共72分)17、(1)作圖見解析;(2)證明書見解析.【解析】
(1)以點N為圓心,以MQ長度為半徑畫弧,以點M為圓心,以NQ長度為半徑畫弧,兩弧交于一點F,則△MNF為所畫三角形.(2)延長DA至E,使得AE=CB,連結CE.證明△EAC≌△BCA,得:∠B=∠E,AB=CE,根據(jù)等量代換可以求得答案.【詳解】解:(1)如圖1,以N為圓心,以MQ為半徑畫圓弧;以M為圓心,以NQ為半徑畫圓?。粌蓤A弧的交點即為所求.(2)如圖,延長DA至E,使得AE=CB,連結CE.∵∠ACB+∠CAD=180°,∠DACDAC+∠EAC=180°,∴∠BACBCA=∠EAC.在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,∴△AECEAC≌△BCA(SAS).∴∠B=∠E,AB=CE.∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.考點:1.尺規(guī)作圖;2.全等三角形的判定和性質.18、(1)3,1;(2)(4+,3);(3)或【解析】
(1)把點A(4,n)代入一次函數(shù)y=x-3,得到n的值為3;再把點A(4,3)代入反比例函數(shù),得到k的值為1;(2)根據(jù)坐標軸上點的坐標特征可得點B的坐標為(2,3),過點A作AE⊥x軸,垂足為E,過點D作DF⊥x軸,垂足為F,根據(jù)勾股定理得到AB=,根據(jù)AAS可得△ABE≌△DCF,根據(jù)菱形的性質和全等三角形的性質可得點D的坐標;(3)根據(jù)反比函數(shù)的性質即可得到當y≥-2時,自變量x的取值范圍.【詳解】解:(1)把點A(4,n)代入一次函數(shù)y=x-3,可得n=×4-3=3;把點A(4,3)代入反比例函數(shù),可得3=,解得k=1.(2)∵一次函數(shù)y=x-3與x軸相交于點B,∴x-3=3,解得x=2,∴點B的坐標為(2,3),如圖,過點A作AE⊥x軸,垂足為E,過點D作DF⊥x軸,垂足為F,∵A(4,3),B(2,3),∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2,在Rt△ABE中,AB=,∵四邊形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x軸,DF⊥x軸,∴∠AEB=∠DFC=93°,在△ABE與△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴點D的坐標為(4+,3).(3)當y=-2時,-2=,解得x=-2.故當y≥-2時,自變量x的取值范圍是x≤-2或x>3.19、(1)①直線AB的解析式為y=﹣12【解析】分析:(1)①先確定出點A,B坐標,再利用待定系數(shù)法即可得出結論;②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結論;(2)先確定出B(1,m4),進而得出A(1-t,m4+t),即:(1-t)(m4詳解:(1)①如圖1,∵m=1,∴反比例函數(shù)為y=4x∴B(1,1),當y=2時,∴2=4x∴x=2,∴A(2,2),設直線AB的解析式為y=kx+b,∴2k+b=∴k=∴直線AB的解析式為y=-12②四邊形ABCD是菱形,理由如下:如圖2,由①知,B(1,1),∵BD∥y軸,∴D(1,5),∵點P是線段BD的中點,∴P(1,3),當y=3時,由y=4x得,x=4由y=20x得,x=20∴PA=1-43=83,PC=203∴PA=PC,∵PB=PD,∴四邊形ABCD為平行四邊形,∵BD⊥AC,∴四邊形ABCD是菱形;(2)四邊形ABCD能是正方形,理由:當四邊形ABCD是正方形,∴PA=PB=PC=PD,(設為t,t≠0),當x=1時,y=mx=m∴B(1,m4∴A(1-t,m4∴(1-t)(m4∴t=1-m4∴點D的縱坐標為m4+2t=m4+2(1-m4∴D(1,8-m4∴1(8-m4∴m+n=2.點睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質,正方形的性質,判斷出四邊形ABCD是平行四邊形是解本題的關鍵.20、(1)反比例函數(shù)的解析式為y=,b的值為﹣1;(1)當x<﹣4或0<x<1時,反比例函數(shù)大于一次函數(shù)的值;(3)一次函數(shù)的解析式為y=x+1【解析】
(1)由題意得到A(1,4),設反比例函數(shù)的解析式為y=(k≠0),根據(jù)待定系數(shù)法即可得到反比例函數(shù)解析式為y=;再由點B(﹣4,b)在反比例函數(shù)的圖象上,得到b=﹣1;(1)由(1)知A(1,4),B(﹣4,﹣1),結合圖象即可得到答案;(3)設一次函數(shù)的解析式為y=mx+n(m≠0),反比例函數(shù)的解析式為y=,因為A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個交點,得到,解得p=8,a=1,b=﹣1,則A(1,4),B(﹣4,﹣1),由點A、點B在一次函數(shù)y=mx+n圖象上,得到,解得,即可得到答案.【詳解】(1)若a=1,則A(1,4),設反比例函數(shù)的解析式為y=(k≠0),∵點A在反比例函數(shù)的圖象上,∴4=,解得k=4,∴反比例函數(shù)解析式為y=;∵點B(﹣4,b)在反比例函數(shù)的圖象上,∴b==﹣1,即反比例函數(shù)的解析式為y=,b的值為﹣1;(1)由(1)知A(1,4),B(﹣4,﹣1),根據(jù)圖象:當x<﹣4或0<x<1時,反比例函數(shù)大于一次函數(shù)的值;(3)設一次函數(shù)的解析式為y=mx+n(m≠0),反比例函數(shù)的解析式為y=,∵A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個交點,∴,即,①+②得4a﹣4b=1p,∵a﹣b=4,∴16=1p,解得p=8,把p=8代入①得4a=8,代入②得﹣4b=8,解得a=1,b=﹣1,∴A(1,4),B(﹣4,﹣1),∵點A、點B在一次函數(shù)y=mx+n圖象上,∴解得∴一次函數(shù)的解析式為y=x+1.【點睛】本題考查一次函數(shù)與反比例函數(shù),解題的關鍵是待定系數(shù)法求函數(shù)解析式.21、(1);(1)時,取最大值,為.【解析】
(1)分別延長DE,F(xiàn)P,與BC的延長線相交于G,H,由AF=x知CH=x-4,根據(jù),即可得z=,利用矩形的面積公式即可得出解析式;
(1)將(1)中所得解析式配方成頂點式,利用二次函數(shù)的性質解答可得.【詳解】解:(1)分別延長DE,F(xiàn)P,與BC的延長線相交于G,H,
∵AF=x,
∴CH=x-4,
設AQ=z,PH=BQ=6-z,
∵PH∥EG,
∴,即,
化簡得z=,
∴y=?x=-x1+x(4≤x≤10);
(1)y=-x1+x=-(x-)1+,
當x=dm時,y取最大值,最大值是dm1.【點睛】本題考查了二次函數(shù)的應用,解題的關鍵是根據(jù)相似三角形的性質得出矩形另一邊AQ的長及二次函數(shù)的性質.22、(1),;(2),1,1.【解析】
(1)根據(jù)四邊形OABC為矩形即可求出點B坐標,設直線OB解析式為,將B代入即可求直線OB的解析式;(2)由題意可得,由(1)可得點的坐標為,表達出△OMP的面積即可,利用二次函數(shù)的性質求出最大值.【詳解】解:(1)∵OA=6,OC=4,四邊形OABC為矩形,∴AB=OC=4,∴點B,設直線OB解析式為,將B代入得,解得,∴,故答案為:;(2)由題可知,,由(1)可知,點的坐標為,∴當時,有最大值1.【點睛】本題考查了二次函數(shù)與幾何動態(tài)問題,解題的關鍵是根據(jù)題意表達出點的坐標,利用幾何知識列出函數(shù)關系式.23、(1)AE=DF,AE⊥DF,理由見解析;(2)成立,CE:CD=或2;(3)【解析】試題分析:(1)根據(jù)正方形的性質,由SAS先證得△ADE≌△DCF.由全等三角形的性質得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當AC=CE時,設正方形ABCD的邊長為a,由勾股定理求出AC=CE=a即可;②當AE=AC時,設正方形的邊長為a,由勾股定理求出AC=AE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026上半年云南事業(yè)單位聯(lián)考省民族宗教事務委員會委屬事業(yè)單位公開招聘人員參考考試題庫附答案解析
- 2026年合肥市萬泉河路幼兒園、合肥市杭州路幼兒園招聘備考考試試題附答案解析
- 2026黑龍江哈爾濱市侵華日軍第七三一部隊罪證陳列館招聘編外人員15人參考考試試題附答案解析
- 2026南昌市勞動保障事務代理中心招聘勞務派遣人員備考考試題庫附答案解析
- 2026重慶市萬州區(qū)高梁鎮(zhèn)人民政府招聘公益性崗位人員1人備考考試試題附答案解析
- 醫(yī)院制度考試試題及答案
- 局安全生產考核制度
- 廣西物資學校2026年春學期招聘兼職教師備考考試試題附答案解析
- 門診部安全生產責任制度
- 生產計劃報批制度
- 黨群工作部室部管理制度
- 2025至2030年中國兔子養(yǎng)殖行業(yè)市場現(xiàn)狀調查及投資方向研究報告
- 委外施工安全試題及答案
- DBT29-320-2025 天津市建筑工程消能減震隔震技術規(guī)程
- 產品技術維護與保養(yǎng)手冊
- 2024年國家電網招聘之電工類考試題庫(突破訓練)
- 中建公司建筑機電設備安裝工程標準化施工手冊
- 心臟科醫(yī)生在心血管疾病治療及介入手術方面的總結
- 建設單位項目安全生產方案(2篇)
- 畜牧業(yè)動物疫病防控手冊
- 年度采購合同框架協(xié)議
評論
0/150
提交評論