2023-2024學(xué)年北京市豐臺區(qū)重點(diǎn)中學(xué)高一下數(shù)學(xué)期末調(diào)研模擬試題含解析_第1頁
2023-2024學(xué)年北京市豐臺區(qū)重點(diǎn)中學(xué)高一下數(shù)學(xué)期末調(diào)研模擬試題含解析_第2頁
2023-2024學(xué)年北京市豐臺區(qū)重點(diǎn)中學(xué)高一下數(shù)學(xué)期末調(diào)研模擬試題含解析_第3頁
2023-2024學(xué)年北京市豐臺區(qū)重點(diǎn)中學(xué)高一下數(shù)學(xué)期末調(diào)研模擬試題含解析_第4頁
2023-2024學(xué)年北京市豐臺區(qū)重點(diǎn)中學(xué)高一下數(shù)學(xué)期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年北京市豐臺區(qū)重點(diǎn)中學(xué)高一下數(shù)學(xué)期末調(diào)研模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最小值為()A. B. C. D.22.已知,其中,若函數(shù)在區(qū)間內(nèi)有零點(diǎn),則實(shí)數(shù)的取值可能是()A. B. C. D.3.圓與圓的位置關(guān)系是()A.相切 B.內(nèi)含 C.相離 D.相交4.已知,,且,則實(shí)數(shù)等于()A.-1 B.-9 C.3 D.95.已知函數(shù)在處取得極小值,則的最小值為()A.4 B.5 C.9 D.106.已知是兩條不同的直線,是三個(gè)不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則7.對于函數(shù),在使成立的所有常數(shù)中,我們把的最大值稱為函數(shù)的“下確界”.若函數(shù),的“下確界”為,則的取值范圍是()A. B. C. D.8.若直線:與直線:平行,則的值為()A.1 B.1或2 C.-2 D.1或-29.在數(shù)列{an}中,an=31﹣3n,設(shè)bn=anan+1an+2(n∈N*).Tn是數(shù)列{bn}的前n項(xiàng)和,當(dāng)Tn取得最大值時(shí)n的值為()A.11 B.10 C.9 D.810.已知數(shù)列{an}前n項(xiàng)和為Sn,且滿足①數(shù)列{an}必為等比數(shù)列;②p=1時(shí),S5=3132;③正確的個(gè)數(shù)有()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列的前項(xiàng)和為,,,則________.12.函數(shù)的單調(diào)增區(qū)間為_________.13.中,,則A的取值范圍為______.14.若直線與曲線相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)?shù)拿娣e取最大值時(shí),實(shí)數(shù)m的取值____.15.如圖是一個(gè)算法的流程圖,則輸出的的值是________.16.在等比數(shù)列中,,,則_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱錐中,側(cè)面與側(cè)面均為邊長為2的等邊三角形,,為中點(diǎn).(1)證明:;(2)求點(diǎn)到平面的距離.18.在中,角,,所對的邊為,,,向量與向量共線.(1)若,求的值;(2)若為邊上的一點(diǎn),且,若為的角平分線,求的取值范圍.19.已知為銳角,,.(1)求的值;(2)求的值.20.已知函數(shù)(1)若關(guān)于的不等式的解集為,求的值;(2)若對任意恒成立,求的取值范圍.21.已知函數(shù)(1)解不等式;(2)若對一切,不等式恒成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

根據(jù)不等式組畫出可行域,數(shù)形結(jié)合解決問題.【詳解】不等式組確定的可行域如下圖所示:因?yàn)榭苫啚榕c直線平行,且其在軸的截距與成正比關(guān)系,故當(dāng)且僅當(dāng)目標(biāo)函數(shù)經(jīng)過和的交點(diǎn)時(shí),取得最小值,將點(diǎn)的坐標(biāo)代入目標(biāo)函數(shù)可得.故選:B.【點(diǎn)睛】本題考查常規(guī)線性規(guī)劃問題,屬基礎(chǔ)題,注意數(shù)形結(jié)合即可.2、D【解析】

求出函數(shù),令,,根據(jù)不等式求解,即可得到可能的取值.【詳解】由題:,其中,令,,若函數(shù)在區(qū)間內(nèi)有零點(diǎn),則有解,解得:當(dāng)當(dāng)當(dāng)結(jié)合四個(gè)選項(xiàng)可以分析,實(shí)數(shù)的取值可能是.故選:D【點(diǎn)睛】此題考查根據(jù)函數(shù)零點(diǎn)求參數(shù)的取值范圍,需要熟練掌握三角函數(shù)的圖像性質(zhì),求出函數(shù)零點(diǎn)再討論其所在區(qū)間列不等式求解.3、D【解析】

寫出兩圓的圓心,根據(jù)兩點(diǎn)間距離公式求得兩圓心的距離,發(fā)現(xiàn),所以兩圓相交。比較三者之間大小判斷位置關(guān)系?!驹斀狻績蓤A的圓心分別為:,,半徑分別為:,,兩圓心距為:,所以,兩圓相交,選D?!军c(diǎn)睛】通過比較圓心距和半徑和與半徑差直接的關(guān)系判斷,即比較三者之間大小。4、C【解析】

由可知,再利用坐標(biāo)公式求解.【詳解】因?yàn)?,且,所以,即,解得,故選:C.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,解題關(guān)鍵是明確.5、C【解析】由,得,則,所以,所以,當(dāng)且僅當(dāng),即時(shí),等號成立,故選C.6、D【解析】

根據(jù)空間線、面的位置關(guān)系有關(guān)定理,對四個(gè)選項(xiàng)逐一分析排除,由此得出正確選項(xiàng).【詳解】對于A選項(xiàng),直線有可能在平面內(nèi),故A選項(xiàng)錯(cuò)誤.對于B選項(xiàng),兩個(gè)平面有可能相交,平行于它們的交線,故B選項(xiàng)錯(cuò)誤.對于C選項(xiàng),可能平行,故C選項(xiàng)錯(cuò)誤.根據(jù)線面垂直的性質(zhì)定理可知D選項(xiàng)正確.故選D.【點(diǎn)睛】本小題主要考查空間線、面位置關(guān)系的判斷,屬于基礎(chǔ)題.7、A【解析】

由下確界定義,,的最小值是,由余弦函數(shù)性質(zhì)可得.【詳解】由題意,的最小值是,又,由,得,,,時(shí),,所以.故選:A.【點(diǎn)睛】本題考查新定義,由新定義明確本題中的下確界就是函數(shù)的最小值.可通過解不等式確定參數(shù)的范圍.8、A【解析】試題分析:因?yàn)橹本€:與直線:平行,所以或-2,又時(shí)兩直線重合,所以.考點(diǎn):兩條直線平行的條件.點(diǎn)評:此題是易錯(cuò)題,容易選C,其原因是忽略了兩條直線重合的驗(yàn)證.9、B【解析】

由已知得到等差數(shù)列的公差,且數(shù)列的前11項(xiàng)大于1,自第11項(xiàng)起小于1,由,得出從到的值都大于零,時(shí),時(shí),,且,而當(dāng)時(shí),,由此可得答案.【詳解】由,得,等差數(shù)列的公差,由,得,則數(shù)列的前11項(xiàng)大于1,自第11項(xiàng)起小于1.由,可得從到的值都大于零,當(dāng)時(shí),時(shí),,且,當(dāng)時(shí),,所以取得最大值時(shí)的值為11.故選:B.【點(diǎn)睛】本題主要考查了數(shù)列遞推式,以及數(shù)列的和的最值的判定,其中解答的關(guān)鍵是明確數(shù)列的項(xiàng)的特點(diǎn),著重考查了分析問題和解答問題的能力,屬于中檔試題.10、C【解析】

由數(shù)列的遞推式和等比數(shù)列的定義可得數(shù)列{an}為首項(xiàng)為p【詳解】Sn+an=2pn?2時(shí),Sn-1+a相減可得2an-an-1=0,即有數(shù)列由①可得p=1時(shí),S5|a|a5|+|由①可得am·a可得p=1故選:C.【點(diǎn)睛】本題考查數(shù)列的遞推式的運(yùn)用,以及等比數(shù)列的定義和通項(xiàng)公式、求和公式的運(yùn)用,考查化簡整理的運(yùn)算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、18【解析】

利用,化簡得到數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,利用,即可求解.【詳解】,即所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列即所以故答案為:【點(diǎn)睛】本題主要考查了與的關(guān)系以及等比數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.12、【解析】

先求出函數(shù)的定義域,再根據(jù)二次函數(shù)的單調(diào)性和的單調(diào)性,結(jié)合復(fù)合函數(shù)的單調(diào)性的判斷可得出選項(xiàng).【詳解】因?yàn)?,所以或,即函?shù)定義域?yàn)?,設(shè),所以在上單調(diào)遞減,在上單調(diào)遞增,而在單調(diào)遞增,由復(fù)合函數(shù)的單調(diào)性可知,函數(shù)的單調(diào)增區(qū)間為.故填:.【點(diǎn)睛】本題考查復(fù)合函數(shù)的單調(diào)性,注意在考慮函數(shù)的單調(diào)性的同時(shí)需考慮函數(shù)的定義域,屬于基礎(chǔ)題.13、【解析】

由正弦定理將sin2A≤sin2B+sin2C-sinBsinC變?yōu)?,然后用余弦定理推論可求,進(jìn)而根據(jù)余弦函數(shù)的圖像性質(zhì)可求得角A的取值范圍.【詳解】因?yàn)閟in2A≤sin2B+sin2C-sinBsinC,所以,即.所以,因?yàn)?,所以.【點(diǎn)睛】在三角形中,已知邊和角或邊、角關(guān)系,求角或邊時(shí),注意正弦、余弦定理的運(yùn)用.條件只有角的正弦時(shí),可用正弦定理的推論,將角化為邊.14、【解析】

點(diǎn)O到的距離,將的面積用表示出來,再利用均值不等式得到答案.【詳解】曲線表示圓心在原點(diǎn),半徑為1的圓的上半圓,若直線與曲線相交于A,B兩點(diǎn),則直線的斜率,則點(diǎn)O到的距離,又,當(dāng)且僅當(dāng),即時(shí),取得最大值.所以,解得舍去).故答案為.【點(diǎn)睛】本題考查了點(diǎn)到直線的距離,三角形面積,均值不等式,意在考查學(xué)生的計(jì)算能力.15、【解析】由程序框圖,得運(yùn)行過程如下:;,結(jié)束循環(huán),即輸出的的值是7.16、1【解析】

由等比數(shù)列的性質(zhì)可得,結(jié)合通項(xiàng)公式可得公比q,從而可得首項(xiàng).【詳解】根據(jù)題意,等比數(shù)列中,其公比為,,則,解可得,又由,則有,則,則;故答案為:1.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式以及等比數(shù)列性質(zhì)(其中m+n=p+q)的應(yīng)用,也可以利用等比數(shù)列的基本量來解決.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)由題設(shè)AB=AC=SB=SC=SA,連結(jié)OA,推導(dǎo)出SO⊥BC,SO⊥AO,由此能證明SO⊥平面ABC;(2)設(shè)點(diǎn)B到平面SAC的距離為h,由VS﹣BAC=VB﹣SAC,能求出點(diǎn)B到平面SAC的距離.【詳解】(1)由題設(shè),連結(jié),為等腰直角三角形,所以,且,又為等腰三角形,故,且,從而.所以為直角三角形,.又.所以平面,故AC⊥SO.(2)設(shè)B到平面SAC的距離為,則由(Ⅰ)知:三棱錐即∵為等腰直角三角形,且腰長為2.∴∴∴△SAC的面積為=△ABC面積為,∴,∴B到平面SAC的距離為【點(diǎn)睛】本題考查線面垂直的證明,考查點(diǎn)到平面距離的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、空間想象能力、運(yùn)算求解能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想,是中檔題.18、(1)32;(2)【解析】

由兩向量坐標(biāo)以及向量共線,結(jié)合正弦定理,化簡可得(1)由,,代入原式化簡,即可得到答案;(2)在和在中,利用正弦定理,化簡可得,,代入原式,化簡即可得到,利用三角形的內(nèi)角范圍結(jié)合三角函數(shù)的值域,即可求出的取值范圍.【詳解】向量與向量共線所以,由正弦定理得:.即,由于在中,,則,所以,由于,則.(1),.(2)因?yàn)?,為的角平分線,所以,在中,,因?yàn)?,所以,所以在中,,因?yàn)椋?,所以,則,因?yàn)?,所以,所以,即的取值范圍?【點(diǎn)睛】本題主要考查向量共線、正弦定理、二倍角公式、三角函數(shù)的值域等知識,考查學(xué)生轉(zhuǎn)化與求解能力,考查學(xué)生基本的計(jì)算能力,有一定綜合性.19、(1);(2)【解析】分析:先根據(jù)同角三角函數(shù)關(guān)系得,再根據(jù)二倍角余弦公式得結(jié)果;(2)先根據(jù)二倍角正切公式得,再利用兩角差的正切公式得結(jié)果.詳解:解:(1)因?yàn)?,,所以.因?yàn)?,所以,因此,.?)因?yàn)闉殇J角,所以.又因?yàn)?,所以,因此.因?yàn)?,所以,因此,.點(diǎn)睛:應(yīng)用三角公式解決問題的三個(gè)變換角度(1)變角:目的是溝通題設(shè)條件與結(jié)論中所涉及的角,其手法通常是“配湊”.(2)變名:通過變換函數(shù)名稱達(dá)到減少函數(shù)種類的目的,其手法通常有“切化弦”、“升冪與降冪”等.(3)變式:根據(jù)式子的結(jié)構(gòu)特征進(jìn)行變形,使其更貼近某個(gè)公式或某個(gè)期待的目標(biāo),其手法通常有:“常值代換”、“逆用變用公式”、“通分約分”、“分解與組合”、“配方與平方”等.20、(1);(2)【解析】

(1)不等式可化為,而解集為,可利用韋達(dá)定理或直接代入即可得到答案;(2)法一:討論和時(shí),分離參數(shù)利用均值不等式即可得到取值范圍;法二:利用二次函數(shù)在上大于等于0恒成立,即可得到取值范圍.【詳解】(1)法一:不等式可化為,其解集為,由根與系數(shù)的關(guān)系可知,解得,經(jīng)檢驗(yàn)時(shí)滿足題意.法二:由題意知,原不等式所對應(yīng)的方程的兩個(gè)實(shí)數(shù)根為和4,將(或4)代入方程計(jì)算可得,經(jīng)檢驗(yàn)時(shí)滿足題意.(2)法一:由題意可知恒成立,①若,則恒成立,符合題意。②若,則恒成立,而,當(dāng)且僅當(dāng)時(shí)取等號,所以,即.故實(shí)數(shù)的取值范圍為.法二:二次函數(shù)的對稱軸為.①若,即,函數(shù)在上單調(diào)遞增,恒成立,故;②若,即,此時(shí)在上單調(diào)遞減,在上單調(diào)遞增,由得.故;③若,即,此時(shí)函數(shù)在上單調(diào)遞減,由得,與矛盾,故不存在.綜上所述,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論