四川省廣安市岳池縣達標名校中考數(shù)學模試卷及答案解析_第1頁
四川省廣安市岳池縣達標名校中考數(shù)學模試卷及答案解析_第2頁
四川省廣安市岳池縣達標名校中考數(shù)學模試卷及答案解析_第3頁
四川省廣安市岳池縣達標名校中考數(shù)學模試卷及答案解析_第4頁
四川省廣安市岳池縣達標名校中考數(shù)學模試卷及答案解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省廣安市岳池縣達標名校中考數(shù)學模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列方程中,兩根之和為2的是()A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=02.正比例函數(shù)y=2kx的圖象如圖所示,則y=(k-2)x+1-k的圖象大致是()A.B.C.D.3.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當1<x<4時,有y2<y1,其中正確的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤4.下列二次根式,最簡二次根式是()A. B. C. D.5.下列關于統(tǒng)計與概率的知識說法正確的是()A.武大靖在2018年平昌冬奧會短道速滑500米項目上獲得金牌是必然事件B.檢測100只燈泡的質量情況適宜采用抽樣調查C.了解北京市人均月收入的大致情況,適宜采用全面普查D.甲組數(shù)據(jù)的方差是0.16,乙組數(shù)據(jù)的方差是0.24,說明甲組數(shù)據(jù)的平均數(shù)大于乙組數(shù)據(jù)的平均數(shù)6.在一組數(shù)據(jù):1,2,4,5中加入一個新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小7.下列圖案是軸對稱圖形的是()A. B. C. D.8.解分式方程,分以下四步,其中,錯誤的一步是()A.方程兩邊分式的最簡公分母是(x﹣1)(x+1)B.方程兩邊都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解這個整式方程,得x=1D.原方程的解為x=19.如圖是一個正方體的表面展開圖,如果對面上所標的兩個數(shù)互為相反數(shù),那么圖中的值是().A. B. C. D.10.為喜迎黨的十九大召開,樂陵某中學剪紙社團進行了剪紙大賽,下列作品既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.11.已知3x+y=6,則xy的最大值為()A.2 B.3 C.4 D.612.如圖,AB是⊙O的直徑,點C、D是圓上兩點,且∠AOC=126°,則∠CDB=()A.54° B.64° C.27° D.37°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知線段厘米,厘米,線段c是線段a和線段b的比例中項,線段c的長度等于________厘米.14.已知扇形的弧長為2π,圓心角為60°,則它的半徑為________.15.2017年12月31日晚,鄭東新區(qū)如意湖文化廣場舉行了“文化跨年夜、出彩鄭州人”的跨年慶祝活動,大學生小明和小剛都各自前往觀看了演出,而且他們兩人前往時選擇了以下三種交通工具中的一種:共享單車、公交、地鐵,則他們兩人選擇同一種交通工具前往觀看演出的概率為_____.16.已知一紙箱中,裝有5個只有顏色不同的球,其中2個白球,3個紅球,若往原紙箱中再放入x個白球,然后從箱中隨機取出一個白球的概率是2317.不等式組的解集是__________.18.已知x、y是實數(shù)且滿足x2+xy+y2﹣2=0,設M=x2﹣xy+y2,則M的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某車間的甲、乙兩名工人分別同時生產只同一型號的零件,他們生產的零件(只)與生產時間(分)的函數(shù)關系的圖象如圖所示.根據(jù)圖象提供的信息解答下列問題:(1)甲每分鐘生產零件_______只;乙在提高生產速度之前已生產了零件_______只;(2)若乙提高速度后,乙的生產速度是甲的倍,請分別求出甲、乙兩人生產全過程中,生產的零件(只)與生產時間(分)的函數(shù)關系式;(3)當兩人生產零件的只數(shù)相等時,求生產的時間;并求出此時甲工人還有多少只零件沒有生產.20.(6分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下面是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬,水面最深地方的高度為4cm,求這個圓形截面的半徑.21.(6分)服裝店準備購進甲乙兩種服裝,甲種每件進價80元,售價120元;乙種每件進價60元,售價90元,計劃購進兩種服裝共100件,其中甲種服裝不少于65件.(1)若購進這100件服裝的費用不得超過7500,則甲種服裝最多購進多少件?(2)在(1)條件下,該服裝店在5月1日當天對甲種服裝以每件優(yōu)惠a(0<a<20)元的價格進行優(yōu)惠促銷活動,乙種服裝價格不變,那么該服裝店應如何調整進貨方案才能獲得最大利潤?22.(8分).在一個不透明的布袋中裝有三個小球,小球上分別標有數(shù)字﹣1、0、2,它們除了數(shù)字不同外,其他都完全相同.隨機地從布袋中摸出一個小球,則摸出的球為標有數(shù)字2的小球的概率為;小麗先從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標系內點M的橫坐標.再將此球放回、攪勻,然后由小華再從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標系內點M的縱坐標,請用樹狀圖或表格列出點M所有可能的坐標,并求出點M落在如圖所示的正方形網格內(包括邊界)的概率.23.(8分)我市正在創(chuàng)建“全國文明城市”,某校擬舉辦“創(chuàng)文知識”搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元.A、B兩種獎品每件各多少元?現(xiàn)要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?24.(10分)某商店銷售兩種品牌的計算器,購買2個A品牌和3個B品牌的計算器共需280元;購買3個A品牌和1個B品牌的計算器共需210元.(Ⅰ)求這兩種品牌計算器的單價;(Ⅱ)開學前,該商店對這兩種計算器開展了促銷活動,具體辦法如下:A品牌計算器按原價的九折銷售,B品牌計算器10個以上超出部分按原價的七折銷售.設購買x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1,y2關于x的函數(shù)關系式.(Ⅲ)某校準備集體購買同一品牌的計算器,若購買計算器的數(shù)量超過15個,購買哪種品牌的計算器更合算?請說明理由.25.(10分)(7分)某中學1000名學生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取整數(shù),滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:成績分組頻數(shù)頻率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合計■1(1)寫出a,b,c的值;(2)請估計這1000名學生中有多少人的競賽成績不低于70分;(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學參加環(huán)保知識宣傳活動,求所抽取的2名同學來自同一組的概率.26.(12分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.求證:四邊形ACDF是平行四邊形;當CF平分∠BCD時,寫出BC與CD的數(shù)量關系,并說明理由.27.(12分)先化簡,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

由根與系數(shù)的關系逐項判斷各項方程的兩根之和即可.【詳解】在方程x2+2x-3=0中,兩根之和等于-2,故A不符合題意;在方程x2-2x-3=0中,兩根之和等于2,故B符合題意;在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,則該方程無實數(shù)根,故C不符合題意;在方程4x2-2x-3=0中,兩根之和等于-,故D不符合題意,故選B.【點睛】本題主要考查根與系數(shù)的關系,掌握一元二次方程的兩根之和等于-、兩根之積等于是解題的關鍵.2、B【解析】試題解析:由圖象可知,正比函數(shù)y=2kx的圖象經過二、四象限,∴2k<0,得k<0,∴k?2<0,1?k>0,∴函數(shù)y=(k?2)x+1?k圖象經過一、二、四象限,故選B.3、C【解析】試題解析:∵拋物線的頂點坐標A(1,3),∴拋物線的對稱軸為直線x=-=1,∴2a+b=0,所以①正確;∵拋物線開口向下,∴a<0,∴b=-2a>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以②錯誤;∵拋物線的頂點坐標A(1,3),∴x=1時,二次函數(shù)有最大值,∴方程ax2+bx+c=3有兩個相等的實數(shù)根,所以③正確;∵拋物線與x軸的一個交點為(4,0)而拋物線的對稱軸為直線x=1,∴拋物線與x軸的另一個交點為(-2,0),所以④錯誤;∵拋物線y1=ax2+bx+c與直線y2=mx+n(m≠0)交于A(1,3),B點(4,0)∴當1<x<4時,y2<y1,所以⑤正確.故選C.考點:1.二次函數(shù)圖象與系數(shù)的關系;2.拋物線與x軸的交點.4、C【解析】

根據(jù)最簡二次根式的定義逐個判斷即可.【詳解】A.,不是最簡二次根式,故本選項不符合題意;B.,不是最簡二次根式,故本選項不符合題意;C.是最簡二次根式,故本選項符合題意;D.,不是最簡二次根式,故本選項不符合題意.故選C.【點睛】本題考查了最簡二次根式的定義,能熟記最簡二次根式的定義是解答此題的關鍵.5、B【解析】

根據(jù)事件發(fā)生的可能性的大小,可判斷A,根據(jù)調查事物的特點,可判斷B;根據(jù)調查事物的特點,可判斷C;根據(jù)方差的性質,可判斷D.【詳解】解:A、武大靖在2018年平昌冬奧會短道速滑500米項目上可能獲得獲得金牌,也可能不獲得金牌,是隨機事件,故A說法不正確;B、燈泡的調查具有破壞性,只能適合抽樣調查,故檢測100只燈泡的質量情況適宜采用抽樣調查,故B符合題意;C、了解北京市人均月收入的大致情況,調查范圍廣適合抽樣調查,故C說法錯誤;D、甲組數(shù)據(jù)的方差是0.16,乙組數(shù)據(jù)的方差是0.24,說明甲組數(shù)據(jù)的波動比乙組數(shù)據(jù)的波動小,不能說明平均數(shù)大于乙組數(shù)據(jù)的平均數(shù),故D說法錯誤;故選B.【點睛】本題考查隨機事件及方差,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.方差越小波動越?。?、D【解析】

根據(jù)中位數(shù)和方差的定義分別計算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,

∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;

∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點睛】本題考查了中位數(shù)和方差,解題的關鍵是掌握中位數(shù)和方差的定義.7、C【解析】解:A.此圖形不是軸對稱圖形,不合題意;B.此圖形不是軸對稱圖形,不合題意;C.此圖形是軸對稱圖形,符合題意;D.此圖形不是軸對稱圖形,不合題意.故選C.8、D【解析】

先去分母解方程,再檢驗即可得出.【詳解】方程無解,雖然化簡求得,但是將代入原方程中,可發(fā)現(xiàn)和的分母都為零,即無意義,所以,即方程無解【點睛】本題考查了分式方程的求解與檢驗,在分式方程中,一般求得的x值都需要進行檢驗9、D【解析】

根據(jù)正方體平面展開圖的特征得出每個相對面,再由相對面上的兩個數(shù)互為相反數(shù)可得出x的值.【詳解】解:“3”與“-3”相對,“y”與“-2”相對,“x”與“-8”相對,故x=8,故選D.【點睛】本題主要考查了正方體相對面上的文字,解決本題的關鍵是要熟練掌握正方體展開圖的特征.10、C【解析】

根據(jù)軸對稱和中心對稱的定義去判斷即可得出正確答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形,故此選項正確;D、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:C.【點睛】本題考查的是軸對稱和中心對稱的知識點,解題關鍵在于對知識點的理解和把握.11、B【解析】

根據(jù)已知方程得到y(tǒng)=-1x+6,將其代入所求的代數(shù)式后得到:xy=-1x2+6x,利用配方法求該式的最值.【詳解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值為1.故選B.【點睛】考查了二次函數(shù)的最值,解題時,利用配方法和非負數(shù)的性質求得xy的最大值.12、C【解析】

由∠AOC=126°,可求得∠BOC的度數(shù),然后由圓周角定理,求得∠CDB的度數(shù).【詳解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故選:C.【點睛】此題考查了圓周角定理.注意在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

根據(jù)比例中項的定義,列出比例式即可得出中項,注意線段不能為負.【詳解】∵線段c是線段a和線段b的比例中項,∴,解得(線段是正數(shù),負值舍去),∴,故答案為:1.【點睛】本題考查比例線段、比例中項等知識,比例中項的平方等于兩條線段的乘積,熟練掌握基本概念是解題關鍵.14、6.【解析】分析:設扇形的半徑為r,根據(jù)扇形的面積公式及扇形的面積列出方程,求解即可.詳解:設扇形的半徑為r,根據(jù)題意得:60πr解得:r=6故答案為6.點睛:此題考查弧長公式,關鍵是根據(jù)弧長公式解答.15、【解析】

首先根據(jù)題意畫樹狀圖,然后根據(jù)樹狀圖即可求得所有等可能的結果,最后用概率公式求解即可求得答案.【詳解】樹狀圖如圖所示,

∴一共有9種等可能的結果;

根據(jù)樹狀圖知,兩人選擇同一種交通工具前往觀看演出的有3種情況,

∴選擇同一種交通工具前往觀看演出的概率:,

故答案為.【點睛】此題考查了樹狀圖法求概率.注意樹狀圖法適合兩步或兩步以上完成的事件,樹狀圖法可以不重不漏的表示出所有等可能的結果,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.16、1.【解析】

先根據(jù)概率公式得到2+x5+x=2【詳解】根據(jù)題意得2+x5+x解得x=4.故答案為:4.【點睛】本題考查了概率公式:隨機事件A的概率PA=事件17、x≥1【解析】分析:分別求出兩個不等式的解,從而得出不等式組的解集.詳解:解不等式①可得:x≥1,解不等式②可得:x>-3,∴不等式組的解為x≥1.點睛:本題主要考查的是不等式組的解集,屬于基礎題型.理解不等式的性質是解決這個問題的關鍵.18、≤M≤6【解析】

把原式的xy變?yōu)?xy-xy,根據(jù)完全平方公式特點化簡,然后由完全平方式恒大于等于0,得到xy的范圍;再把原式中的xy變?yōu)?2xy+3xy,同理得到xy的另一個范圍,求出兩范圍的公共部分,然后利用不等式的基本性質求出2-2xy的范圍,最后利用已知x2+xy+y2-2=0表示出x2+y2,代入到M中得到M=2-2xy,2-2xy的范圍即為M的范圍.【詳解】由得:即所以由得:即所以∴∴不等式兩邊同時乘以?2得:,即兩邊同時加上2得:即∵∴∴則M的取值范圍是≤M≤6.故答案為:≤M≤6.【點睛】此題考查了完全平方公式,以及不等式的基本性質,解題時技巧性比較強,對已知的式子進行了三次恒等變形,前兩次利用拆項法拼湊完全平方式,最后一次變形后整體代入確定出M關于xy的式子,從而求出M的范圍.要求學生熟練掌握完全平方公式的結構特點:兩數(shù)的平方和加上或減去它們乘積的2倍等于兩數(shù)和或差的平方.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)25,150;(2)y甲=25x(0≤x≤20),;(3)x=14,150【解析】

解:(1)甲每分鐘生產=25只;提高生產速度之前乙的生產速度==15只/分,故乙在提高生產速度之前已生產了零件:15×10=150只;(2)結合后圖象可得:甲:y甲=25x(0≤x≤20);乙提速后的速度為50只/分,故乙生產完500只零件還需7分鐘,乙:y乙=15x(0≤x≤10),當10<x≤17時,設y乙=kx+b,把(10,150)、(17,500),代入可得:10k+b=150,17k+b=500,解得:k=50,b=?350,故y乙=50x?350(10≤x≤17).綜上可得:y甲=25x(0≤x≤20);;(3)令y甲=y(tǒng)乙,得25x=50x?350,解得:x=14,此時y甲=y(tǒng)乙=350只,故甲工人還有150只未生產.20、這個圓形截面的半徑為10cm.【解析】分析:先作輔助線,利用垂徑定理求出半徑,再根據(jù)勾股定理計算.解答:解:如圖,OE⊥AB交AB于點D,則DE=4,AB=16,AD=8,設半徑為R,∴OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm.21、(1)甲種服裝最多購進75件,(2)見解析.【解析】

(1)設甲種服裝購進x件,則乙種服裝購進(100-x)件,然后根據(jù)購進這100件服裝的費用不得超過7500元,列出不等式解答即可;(2)首先求出總利潤W的表達式,然后針對a的不同取值范圍進行討論,分別確定其進貨方案.【詳解】(1)設購進甲種服裝x件,由題意可知:80x+60(100-x)≤7500,解得x≤75答:甲種服裝最多購進75件,(2)設總利潤為W元,W=(120-80-a)x+(90-60)(100-x)即w=(10-a)x+1.①當0<a<10時,10-a>0,W隨x增大而增大,∴當x=75時,W有最大值,即此時購進甲種服裝75件,乙種服裝25件;②當a=10時,所以按哪種方案進貨都可以;③當10<a<20時,10-a<0,W隨x增大而減?。攛=65時,W有最大值,即此時購進甲種服裝65件,乙種服裝35件.【點睛】本題考查了一元一次方程的應用,不等式的應用,以及一次函數(shù)的性質,正確利用x表示出利潤是關鍵.22、(1);(2)列表見解析,.【解析】試題分析:(1)一共有3種等可能的結果總數(shù),摸出標有數(shù)字2的小球有1種可能,因此摸出的球為標有數(shù)字2的小球的概率為;(2)利用列表得出共有9種等可能的結果數(shù),再找出點M落在如圖所示的正方形網格內(包括邊界)的結果數(shù),可求得結果.試題解析:(1)P(摸出的球為標有數(shù)字2的小球)=;(2)列表如下:小華

小麗

-1

0

2

-1

(-1,-1)

(-1,0)

(-1,2)

0

(0,-1)

(0,0)

(0,2)

2

(2,-1)

(2,0)

(2,2)

共有9種等可能的結果數(shù),其中點M落在如圖所示的正方形網格內(包括邊界)的結果數(shù)為6,∴P(點M落在如圖所示的正方形網格內)==.考點:1列表或樹狀圖求概率;2平面直角坐標系.23、(1)A種獎品每件16元,B種獎品每件4元.(2)A種獎品最多購買41件.【解析】【分析】(1)設A種獎品每件x元,B種獎品每件y元,根據(jù)“如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;(2)設A種獎品購買a件,則B種獎品購買(100﹣a)件,根據(jù)總價=單價×購買數(shù)量結合總費用不超過900元,即可得出關于a的一元一次不等式,解之取其中最大的整數(shù)即可得出結論.【詳解】(1)設A種獎品每件x元,B種獎品每件y元,根據(jù)題意得:,解得:,答:A種獎品每件16元,B種獎品每件4元;(2)設A種獎品購買a件,則B種獎品購買(100﹣a)件,根據(jù)題意得:16a+4(100﹣a)≤900,解得:a≤,∵a為整數(shù),∴a≤41,答:A種獎品最多購買41件.【點睛】本題考查了一元一次不等式的應用以及二元一次方程組的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據(jù)不等關系,正確列出不等式.24、(1)A種品牌計算器50元/個,B種品牌計算器60元/個;(2)y1=45x,y2=;(3)詳見解析.【解析】

(1)根據(jù)題意列出二元一次方程組并求解即可;(2)按照“購買所需費用=折扣×單價×數(shù)量”列式即可,注意B品牌計算器的采購要分0≤x≤10和x>10兩種情況考慮;(3)根據(jù)上問所求關系式,分別計算當x>15時,由y1=y2、y1>y2、y1<y2確定其分別對應的銷量范圍,從而確定方案.【詳解】(Ⅰ)設A、B兩種品牌的計算器的單價分別為a元、b元,根據(jù)題意得,,解得:,答:A種品牌計算器50元/個,B種品牌計算器60元/個;(Ⅱ)A品牌:y1=50x?0.9=45x;B品牌:①當0≤x≤10時,y2=60x,②當x>10時,y2=10×60+60×(x﹣10)×0.7=42x+180,綜上所述:y1=45x,y2=;(Ⅲ)當y1=y2時,45x=42x+180,解得x=60,即購買60個計算器時,兩種品牌都一樣;當y1>y2時,45x>42x+180,解得x>60,即購買超過60個計算器時,B品牌更合算;當y1<y2時,45x<42x+180,解得x<60,即購買不足60個計算器時,A品牌更合算,當購買數(shù)量為15時,顯然購買A品牌更劃算.【點睛】本題考查了二元一次方程組的應用.25、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【解析】

(1)利用50≤x<60的頻數(shù)和頻率,根據(jù)公式:頻率=頻數(shù)÷總數(shù)先計算出樣本總人數(shù),再分別計算出a,b,c的值;(2)先計算出競賽分數(shù)不低于70分的頻率,根據(jù)樣本估計總體的思想,計算出1000名學生中競賽成績不低于70分的人數(shù);(3)列樹形圖或列出表格,得到要求的所有情況和2名同學來自一組的情況,利用求概率公式計算出概率.【詳解】解:(1)樣本人數(shù)為:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人數(shù)為:50×0.5=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論