版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
CONTENTS
ExecutiveSummary
3
Accountability
6
Data
9
TrustedDevelopment
12
andDeployment
IncidentReporting
16
TestingandAssurance
19
Security
21
ContentProvenance
23
SafetyandAlignmentR&D26
AIforPublicGood
28
Conclusion
31
Acknowledgements
32
FurtherDevelopment
34
3
MODELAIGOVERNANCEFRAMEWORKFORGENERATIVEAI
EXECUTIVESUMMARY
GenerativeAIhascapturedtheworld’simagination.Whileitholdssignificanttransformativepotential,italsocomeswithrisks.Buildingatrustedecosystemisthereforecritical—ithelpspeopleembraceAIwithconfidence,givesmaximalspaceforinnovation,andservesasacorefoundationtoharnessingAIforthePublicGood.
AI,asawhole,isatechnologythathasbeendevelopingovertheyears.PriordevelopmentanddeploymentissometimestermedtraditionalAI.1TolaythegroundworktopromotetheresponsibleuseoftraditionalAI,Singaporereleasedthefirstversionofthe
ModelAIGovernanceFramework
in2019,andupdateditsubsequentlyin2020.2TherecentadventofgenerativeAI3hasreinforcedsomeofthesameAIrisks(e.g.,bias,misuse,lackofexplainability),andintroducednewones(e.g.,hallucination,copyrightinfringement,valuealignment).Theseconcernswerehighlightedinourearlier
DiscussionPaperonGenerativeAI:Implicationsfor
TrustandGovernance,
4issuedinJune2023.Thediscussionsandfeedbackhavebeeninstructive.
Existinggovernanceframeworksneedtobereviewedtofosterabroadertrustedecosystem.Acarefulbalanceneedstobestruckbetweenprotectingusersanddrivinginnovation.Therehavealsobeenvariousinternationaldiscussionspullingintherelatedandpertinenttopicsofaccountability,copyrightandmisinformation,amongothers.Theseissuesareinterconnectedandneedtobeviewedinapracticalandholisticmanner.Nosingleinterventionwillbeasilverbullet.
ThisModelAIGovernanceFrameworkforGenerativeAIthereforeseekstosetforthasystematicandbalancedapproachtoaddressgenerativeAIconcernswhilecontinuingtofacilitateinnovation.Itrequiresallkeystakeholders,includingpolicymakers,industry,theresearchcommunityandthebroaderpublic,tocollectivelydotheirpart.ThereareninedimensionswhichtheFrameworkproposestobelookedatintotality,tofosteratrustedecosystem.
a)Accountability—AccountabilityisakeyconsiderationtoincentiviseplayersalongtheAIdevelopmentchaintoberesponsibletoend-users.Indoingso,werecognisethatgenerativeAI,likemostsoftwaredevelopment,involvesmultiplelayersinthetechstack,andhencetheallocationofresponsibilitymaynotbeimmediatelyclear.WhilegenerativeAIdevelopmenthasuniquecharacteristics,usefulparallelscanstillbedrawnwithtoday’scloudandsoftwaredevelopmentstacks,andinitialpracticalstepscanbetaken.
1TraditionalAIreferstoAImodelsthatmakepredictionsbyleveraginginsightsderivedfromhistoricaldata.TypicaltraditionalAImodelsincludelogisticregression,decisiontreesandconditionalrandomfields.Othertermsusedtodescribethisinclude“discriminativeAI”.
2ThefocusoftheModelAIGovernanceFrameworkistosetoutbestpracticesforthedevelopmentanddeploymentoftraditionalAIsolutions.ThishasbeenincorporatedintoandexpandedundertheTrustedDevelopmentandDeploymentdimensionoftheModelAIGovernanceFrameworkforGenerativeAI.
3GenerativeAIareAImodelscapableofgeneratingtext,imagesorothermediatypes.Theylearnthepatternsandstructureoftheirinputtrainingdataandgeneratenewdatawithsimilarcharacteristics.Advancesintransformer-baseddeepneuralnetworksenablegenerativeAItoacceptnaturallanguagepromptsasinput,includinglargelanguagemodels(LLM)suchasGPT-4,Gemini,ClaudeandLLaMA.
4TheDiscussionPaperwasjointlypublishedbytheInfocommMediaDevelopmentAuthorityofSingapore(IMDA),AicadiumandAIVerifyFoundation.See
https://aiverifyfoundation.sg/downloads/Discussion
_Paper.pdf
4
MODELAIGOVERNANCEFRAMEWORKFORGENERATIVEAI
b)Data—Dataisacoreelementofmodeldevelopment.Itsignificantlyimpactsthequalityofthemodeloutput.Hence,whatisfedtothemodelisimportantandthereisaneedtoensuredataquality,suchasthroughtheuseoftrusteddatasources.Incaseswheretheuseofdataformodeltrainingispotentiallycontentious,suchaspersonaldataandcopyrightmaterial,itisalsoimportanttogivebusinessclarity,ensurefairtreatment,andtodosoinapragmaticway.
c)TrustedDevelopmentandDeployment—Modeldevelopment,andtheapplicationdeploymentontopofit,areatthecoreofAI-driveninnovation.Notwithstandingthelimitedvisibilitythatend-usersmayhave,meaningfultransparencyaroundthebaselinesafetyandhygienemeasuresundertakeniskey.Thisinvolvesindustryadoptingbestpracticesindevelopment,evaluation,andthereafter“foodlabel”-typetransparencyanddisclosure.Thiscanenhancebroaderawarenessandsafetyovertime.
d)IncidentReporting—Evenwiththemostrobustdevelopmentprocessesandsafeguards,nosoftwareweusetodayiscompletelyfoolproof.ThesameappliestoAI.Incidentreportingisanestablishedpractice,andallowsfortimelynotificationandremediation.Establishingstructuresandprocessestoenableincidentmonitoringandreportingisthereforekey.ThisalsosupportscontinuousimprovementofAIsystems.
e)TestingandAssurance—Foratrustedecosystem,third-partytestingandassuranceplaysacomplementaryrole.Wedothistodayinmanydomains,suchasfinanceandhealthcare,toenableindependentverification.AlthoughAItestingisanemergingfield,itisvaluableforcompaniestoadoptthird-partytestingandassurancetodemonstratetrustwiththeirend-users.ItisalsoimportanttodevelopcommonstandardsaroundAItestingtoensurequalityandconsistency.
f)Security—GenerativeAIintroducesthepotentialfornewthreatvectorsagainstthemodelsthemselves.Thisgoesbeyondsecurityrisksinherentinanysoftwarestack.Whilethisisanascentarea,existingframeworksforinformationsecurityneedtobeadaptedandnewtestingtoolsdevelopedtoaddresstheserisks.
g)ContentProvenance—AI-generatedcontent,becauseoftheeasewithwhichitcanbecreated,canexacerbatemisinformation.Transparencyaboutwhereandhowcontentisgeneratedenablesend-userstodeterminehowtoconsumeonlinecontentinaninformedmanner.Governmentsarelookingtotechnicalsolutionslikedigitalwatermarkingandcryptographicprovenance.Thesetechnologiesneedtobeusedintherightcontext.
h)SafetyandAlignmentResearch&Development(R&D)—Thestate-of-the-sciencetodayformodelsafetydoesnotfullycoverallrisks.AcceleratedinvestmentinR&Disrequiredtoimprovemodelalignmentwithhumanintentionandvalues.GlobalcooperationamongAIsafetyR&Dinstituteswillbecriticaltooptimiselimitedresourcesformaximumimpact,andkeeppacewithcommerciallydrivengrowthinmodelcapabilities.
i)AIforPublicGood—ResponsibleAIgoesbeyondriskmitigation.ItisalsoaboutupliftingandempoweringourpeopleandbusinessestothriveinanAI-enabledfuture.DemocratisingAIaccess,improvingpublicsectorAIadoption,upskillingworkersanddevelopingAIsystemssustainablywillsupporteffortstosteerAItowardsthePublicGood.
5
3.Trusted
Developmentand
Deployment
Enhancing
transparencyaround
baselinesafetyand
hygienemeasures
basedonindustry
bestpractices
indevelopment,
evaluationand
disclosure
5.TestingandAssurance
Providingexternal
validationand
addedtrustthrough
third-partytesting,
anddeveloping
commonAItesting
standardsfor
consistency
4.Incident
Reporting
Implementingan
incidentmanagement
systemfortimely
notification,
remediation
andcontinuous
improvements,asno
AIsystemisfoolproof
7.ContentProvenance
Transparencyaboutwherecontentcomes
fromusefulforend-
assignalsusers
MODELAIGOVERNANCEFRAMEWORKFORGENERATIVEAI
FosteringaTrustedAIEcosystem
1.Accountability
PuttinginplacetherightincentivestructurefordifferentplayersintheAIsystemdevelopmentlifecycletoberesponsibletoend-users
2.Data
Ensuringdataquality
andaddressing
potentiallycontentious
trainingdataina
pragmaticway,as
dataiscoretomodel
development
6.Security
AddressingnewthreatvectorsthatarisethroughgenerativeAImodels
8.SafetyandAlignmentR&D
AcceleratingR&DthroughglobalcooperationamongAISafetyInstitutestoimprovemodelalignmentwithhumanintentionandvalues
9.AIforPublicGood
ResponsibleAIincludesharnessingAItobenefitthepublicbydemocratisingaccess,
improvingpublicsectoradoption,upskillingworkersanddevelopingAIsystemssustainably
ThisFrameworkbuildsonthepolicyideashighlightedinourDiscussionPaperonGenerativeAIanddrawsfrominsightsanddiscussionswithkeyjurisdictions,internationalorganisations,researchcommunitiesandleadingAIorganisations.TheFrameworkwillevolveastechnologyandpolicydiscussionsdevelop.
ACCOUNTABILITY
7
MODELAIGOVERNANCEFRAMEWORKFORGENERATIVEAI
FOSTERINGATRUSTEDAIECOSYSTEM
ACCOUNTABILITY
Accountabilityisakeyconsiderationinfosteringatrustedecosystem.PlayersalongtheAIdevelopmentchainneedtoberesponsibletowardsend-users,5andthestructuralincentivesshouldalignwiththisneed.Theseplayersincludemodeldevelopers,applicationdeployers6andcloudserviceproviders(whooftenprovideplatformsonwhichAIapplicationsarehosted).GenerativeAI,likemostsoftwaredevelopment,involvesmultiplelayersinthetechstack.Whiletheallocationofresponsibilitymaynotbeimmediatelyclear,usefulparallelscanbedrawnwithtoday’scloudandsoftwaredevelopment,andpracticalstepscanbetaken.
Design
Todothiscomprehensively,thereshouldbeconsiderationforhowresponsibilityisallocatedbothupfrontinthedevelopmentprocess(ex-ante)asbestpractice,andguidanceonhowredresscanbeobtainedifissuesarediscoveredthereafter(ex-post).
ExAnte—AllocationUpfront
ResponsibilitycanbeallocatedbasedonthelevelofcontrolthateachstakeholderhasinthegenerativeAIdevelopmentchain,sothattheablepartytakesnecessaryactiontoprotectend-users.Asareference,whiletheremaybevariousstakeholdersinthedevelopmentchain,thecloudindustry7hasbuiltandcodifiedcomprehensivesharedresponsibilitymodelsovertime.Theobjectiveistoensureoverallsecurityofthecloudenvironment.Thesemodelsallocateresponsibilitybyexplainingthecontrolsandmeasuresthatcloudserviceproviders(whoprovidethebaseinfrastructurelayer)andtheircustomers(whohostapplicationsonthelayerabove)respectivelyundertake.
ThereisvalueinextendingthisapproachtoAIdevelopment.CloudserviceprovidershaverecentlyextendedsomeelementsoftheircloudsharedresponsibilitymodelstocoverAI,placinginitialfocusonsecuritycontrols.8Thisisagoodstart,andasimilarapproachcanbetakentoaddressothersafetyconcerns.TheAIsharedresponsibilityapproachmayalsoneedtoconsiderdifferentmodeltypes(e.g.,closed-source,open-source9oropen-weights10),giventhedifferentlevelsofcontrolthatapplicationdeployershaveforeachmodeltype.Responsibilityin
5WhiletheFrameworkplacesemphasisonallocatingresponsibilitiesforAIdevelopment,end-usershaveseparateresponsibilitiesforAIuse(e.g.,abidingbytermsofuse).
6WerecognisethatthegenerativeAIdevelopmentchainiscomplex.Applicationdevelopers(whodevelopsolutionsorapplicationsthatmakeuseofAItechnology)andapplicationdeployers(whoprovideAIsolutionsorapplicationstoend-users)cansometimesbetwodifferentparties.Forsimplicity,thispaperusestheterm“applicationdeployers”torefertobothapplicationdevelopersanddeployers.
7ThisincludesGoogleCloud,MicrosoftAzureandAmazonWebServices.
8Microsoft,whichisbothacloudandmodelserviceprovider,hasinitiatedsomeelementsofthis.See
https://learn.microsoft
.com/en-us/azure/security/fundamentals/shared-responsibility-ai
9Open-sourcingmakesavailablethefullsourcecodeandinformationrequiredforre-trainingthemodelfromscratch,includingmodelarchitecturecode,trainingmethodologyandhyperparameters,originaltrainingdatasetanddocumentation.Modelsthatareclosertothisendofthespectrum(butnotfullyopen)includeDollyandBLOOMZ.
10Open-weightsmakesavailablepre-trainedparametersorweightsofthemodelitself,butnotthetrainingcode,dataset,methodology,etc.Existingopen-weightsmodelsincludeLlaMa2,Falcon-40B-InstructandMistral7B-Instruct.
8
MODELAIGOVERNANCEFRAMEWORKFORGENERATIVEAI
thiscase,forexamplewhenusingopen-sourceoropen-weightsmodels,shouldrequireapplicationdeployerstodownloadmodelsfromreputableplatformstominimisetheriskoftamperedmodels.Beingthemostknowledgeableabouttheirownmodelsandhowtheyaredeployed,modeldevelopersarewell-placedtoleadthisdevelopmentinaconcertedmanner.11Thiswillprovidestakeholderswithgreatercertaintyupfront,andfosterasaferecosystem.
ExPost—SafetyNets
Sharedresponsibilitymodelsserveasanimportantfoundationforaccountability—theyprovideclarityonredresswhenissuesoccur.However,theymaynotbeabletocoverallpossiblescenarios.Allocatingresponsibilitywhenthereareneworunanticipatedissuesmayalsobepracticallychallenging.Itwillbeworthconsideringadditionalmeasures—includingconceptsaroundindemnityandinsurance—tobettercoverend-users.
Thisexistsinalimitedformtoday.Inclearerareaswhereredressisneeded,theindustryhasmovedaccordingly.Somemodeldevelopers12havebeguntounderwritecertainrisks,suchasthird-partycopyrightclaimsarisingfromtheuseoftheirAIproductsandservices.Indoingso,developersimplicitlyacknowledgetheirresponsibilityformodeltrainingdataandhowtheirmodelsareused.
Therewillinevitablybeotherareasthatarenotasclearandnotwell-covered.Thismayincluderisksthathavedisproportionateimpactonsocietyasawhole,andwhichmayonlyemergeasAIisused.Itisthereforeusefultoconsiderupdatinglegalframeworkstomakethemmoreflexible,andtoallowemergingriskstobeeasilyandfairlyaddressed.Thisisakintohowend-usersofphysicalproductstodayenjoysafetyprotections.OneexampleofsucheffortsistheEU’sproposedAILiabilityDirectiveandsoon-to-beapprovedRevisedProductLiabilityDirective.TheseDirectivesaimtomakeitsimplerforend-userstoprovedamagecausedbyAI-enabledproductsandservices.Thisensuresthatnopartyisunfairlydisadvantagedbythecompensationprocess.
Finally,thereareboundtoberesidualissuesthatfallthroughthecracks.Thisisaverynascentdiscussion,andalternativesolutionssuchasno-faultinsurance13couldbeconsideredasasafetynet.
11Thedetailsofhowresponsibilitieswillbeallocatedarekeyandwillneedtobeworkedoutgradually.
12Forexample,Adobe,Anthropic,Google,MicrosoftandOpenAI.
13Underano-faultinsuranceapproach,stakeholders’expensesarecoveredregardlessofwhoisatfault.ItiscurrentlyadoptedintheUSforsometypesofmotoraccidentclaims.ThisinsuranceapproachintheAIcontextwarrantsfurtherstudy.
DATA
10
MODELAIGOVERNANCEFRAMEWORKFORGENERATIVEAI
FOSTERINGATRUSTEDAIECOSYSTEM
DATA
Dataisacoreelementofmodelandapplicationdevelopment.AlargecorpusofdataisneededtotrainrobustandreliableAImodels.Givenitsimportance,businessesrequireclarityandcertaintyonhowtheycanusedatainmodeldevelopment.Thisincludespotentiallycontentiousareassuchaspubliclyavailablepersonaldataandcopyrightmaterial,whicharetypicallyincludedinweb-scrapeddatasets.Insuchcases,itisimportanttorecognisecompetingconcerns,ensurefairtreatment,andtodosoinapragmaticway.Inaddition,developingamodelwellrequiresgoodqualitydata,andinsomecircumstances,representativedata.Itisalsoimportanttoensuretheintegrityofavailabledatasets.14
Design
TrustedUseofPersonalData
Aspersonaldataoperateswithinexistinglegalregimes,ausefulstartingpointisforpolicymakerstoarticulatehowexistingpersonaldatalawsapplytogenerativeAI.Thiswillfacilitatetheuseofpersonaldatainamannerthatstillprotectstherightsofindividuals.15Forexample,policymakersandregulatorscanclarifyconsentrequirementsorapplicableexceptions,andprovideguidanceongoodbusinesspracticesfordatauseinAI.16
Anemerginggroupoftechnologies,knowncollectivelyasPrivacyEnhancingTechnologies(PETs),hasthepotentialtoallowdatatobeusedinthedevelopmentofAImodelswhileprotectingdataconfidentialityandprivacy.SomePETssuchasanonymisationtechniquesarenotnew,whileothertechnologiesarestillnascentandevolving.17TheunderstandingofhowPETscanbeappliedtoAIwillbeanimportantareatoadvance.
BalancingCopyrightwithDataAccessibility
Fromamodeldevelopmentperspective,theuseofcopyrightmaterialintrainingdatasetsandtheissueofconsentfromcopyrightownersisstartingtoraiseconcerns,particularlyastoremunerationandlicensingtofacilitatesuchuses.Modelsarealsoincreasinglybeingusedforgeneratingcreativeoutput—someofwhichmimicthestylesofexistingcreatorsandgiverisetoconsiderationsofwhetherthiswouldconstitutefairuse.18
14Datapoisoningattackstrainingdatasetsbyintroducing,modifyingordeletingspecificdatapoints.Forexample,withknowledgeoftheexacttimemodeldeveloperscollectcontent(e.g.,viasnapshots)fromsourceslikeWikipedia,badactorscan“poison”theWikipediawebpageswithfalsecontent,whichwillbescrapedandusedtotrainthegenerativeAImodel.Evenifthesourcemoderatorsundothechangesmadetothewebpages,thecontentwouldhavebeenscrapedandused.
15Thecollectionanduseofpersonaldataisalreadyprotectedundermanyexistingdataregimes.
16OneexampleofthisistheSingaporePersonalDataProtectionCommission’sAdvisoryGuidelinesonUseofPersonalDatainAIRecommendationandDecisionSystems.See
.sg/guidelines-and-consultation/2024/02/advisory-guidelines-on-use-of-personal-data-in
-ai-recommendation-and-decision-systems
17IMDA’sPETSandboxhelpstofacilitateexperimentationbasedonreal-worldusecases,includingusingPETsforAI.ThisenablesindustrytoexploreinnovativeusesofthisemergingtechnologywhileensuringPETsaredeployedinasafeandcompliantmanner.See
.sg/
how-we-can-help/data-innovation/privacy-enhancing-technology-sandboxes
18Thecopyrightissuehasgivenrisetovariedinterestsandconcernsamongstdifferentstakeholders,withpolicymakersstudyingtofindthebestwayforward.Copyrightownershaverequestedforrenumerationforuseoftheirworkstotrainmodels,concernedthatsuchsystemsmaycompetewiththemandimpacttheirlivelihood.Theyhaveadvocatedforlicensing-basedsolutionstofacilitatetextanddataminingactivitiesformachinelearning(ML),aswellasanopt-outsystemforcopyrightownersfromstatutoryexceptionsfortextanddatamining,andMLactivitiestoavoidundulyimpingingontheircommercialinterests.Othershavearguedthattextanddatamining,andMLdonotinfringecopyrightbecausetrainingdoesnotinvolvethecopyinganduseofthecreativeexpressioninworks.Therearealsopracticalconsiderationssurroundingobtainingconsentfromeverycopyrightowner,aswellastrade-offsinmodelperformance.
11
MODELAIGOVERNANCEFRAMEWORKFORGENERATIVEAI
GiventhelargevolumeofdatainvolvedinAItraining,thereisvalueindevelopingapproachestoresolvethesedifficultissuesinaclearandefficientmanner.Today,legalframeworkshavenotyetcoalescedaroundsuchanapproach.SomecopyrightownershaveinstitutedlawsuitsagainstgenerativeAIcompaniesintheUSandUKcourts.Variouscountriesarealsoexploringnon-legislativesolutionssuchascopyrightguidelines19andcodesofpracticefordevelopersandend-users.20
Giventhevariousinterestsatstake,policymakersshouldfosteropendialogueamongstallrelevantstakeholderstounderstandtheimpactofthefast-evolvinggenerativeAItechnology,andensurethatpotentialsolutionsarebalancedandinlinewithmarketrealities.
FacilitatingAccesstoQualityData
Asanoverallhygienemeasureatanorganisationallevel,itwouldbegooddisciplineforAIdeveloperstoundertakedataqualitycontrolmeasuresandadoptgeneralbestpracticesindatagovernance,includingannotatingtrainingdatasetsconsistentlyandaccurately,andusingdataanalysistoolstofacilitatedatacleaning(e.g.,debiasingandremovinginappropriatecontent).
Globally,itisworthconsideringaconcertedefforttoexpandtheavailablepooloftrusteddatasets.ReferencedatasetsareimportanttoolsinbothAImodeldevelopment(e.g.,forfine-tuning)aswellasbenchmarkingandevaluation.21Governmentscanalsoconsiderworkingwiththeirlocalcommunitiestocuratearepositoryofrepresentativetrainingdatasetsfortheirspecificcontext(e.g.,inlowresourcelanguages).Thishelpstoimprovetheavailabilityofqualitydatasetsthatreflecttheculturalandsocialdiversityofacountry,whichinturnsupportsthedevelopmentofsaferandmoreculturallyrepresentativemodels.
19JapanandtheRepublicofKoreahaveannouncedthedevelopmentofcopyrightguidelinestoaddressgenerativeAIissues,thoughtheyhavenotyetbeenissued.
20UKhasannouncedthatitisdevelopingavoluntarycodeofpracticebetweenend-usersandrightsholdersthroughaworkinggroupwithdiverseparticipationfromtechnology,creativeandresearchsectors.Thestatedaimsoftheworkinggrouparetomakelicensesfordataminingmoreavailable,tohelptoovercomebarriersthatAIfirmsandend-userscurrentlyface,andtoensurethereareprotectionsforrightsholders.
21Thisisakintoreferencestandardsin,forexample,thepharmaceuticalindustry,whichareusedasabasisforevaluationfordrugs.
TRUSTED
DEVELOPMENTAND
DEPLOYMENT
13
MODELAIGOVERNANCEFRAMEWORKFORGENERATIVEAI
FOSTERINGATRUSTEDAIECOSYSTEM
TRUSTEDDEVELOPMENT
ANDDEPLOYMENT
Modeldevelopment,andtheapplicationdeploymentontopofit,areatthecoreofAI-driveninnovation.Today,however,thereisalackofinformationontheapproachesbeingtakentoensuretrustworthymodels.Evenincasesof“open-source”models,someimportantinformationlikethemethodologyanddatasetsmaynotbemadeavailable.
Goingforward,itisimportantthattheindustrycoalescesaroundbestpracticesindevelopmentandsafetyevaluation.Thereafter,meaningfultransparencyaroundbaselinesafetyandhygienemeasuresundertakenwillalsobekey.ThiswillenablesafermodelusebyallstakeholdersintheAIecosystem.Suchtransparencywillneedtobebalancedwithlegitimateconsiderationssuchassafeguardingbusinessandproprietaryinformation,andnotallowingbadactorstogamethesystem.
Design
SafetybestpracticesneedtobeimplementedbymodeldevelopersandapplicationdeployersacrosstheAIdevelopmentlifecycle,arounddevelopment,disclosureandevaluation.Groundworkforthishasbeenlaidinthe2020versionoftheModelAIGovernanceFramework,whichsetsoutbestpracticesforthedevelopmentanddeploymentoftraditionalAIsolutions.22TheprinciplesarticulatedtherecontinuetoberelevantandareextendedhereforgenerativeAI.
Development—BaselineSafetyPractices
Safetymeasuresaredevelopingrapidly,andmodeldevelopersandapplicationdeployersarebestplacedtodeterminewhattouse.Evenso,industrypracticesarestartingtocoalescearoundsomecommonsafetypractices.
Forexample,afterpre-training,fine-tuningtechniquessuchasReinforcementLearningfromHumanFeedback(RLHF)23canguidethemodeltogeneratesaferoutputthatismorealignedwithhumanpreferencesandvalues.Acrucialstepforsafetyisalsotoconsiderthecontextoftheusecaseandconductariskassessment.Forexample,furtherfine-tuningorusinguserinteractiontechniques(suchasinputandoutputfilters)canhelptoreduceharmfuloutput.TechniqueslikeRetrieval-AugmentedGeneration(RAG)24andfew-shotlearningarealsocommonlyusedtoreducehallucinationsandimproveaccuracy.
Disclosure—“FoodLabels”
Transparencyaroundthesesafetymeasuresundertaken,thatformthecoreoftheAImodel’smake-upisthenkey.Thisisakinto“foodoringredientlabels”.Byprovidingrelevantinformationtodownstreamusers,theycanmakemoreinformeddecisions.Whileleadingmodeldevelopersalreadydisclosesomeinformation,
22See
.sg/-/media/Files/PDPC/PDF-Files/Resource-for-Organisation/AI/SGModelAIGovFramework2.pdf
23RLHFisatechniqueusedtoimproveLLMsbyusinghumanfeedbacktotrainapreferencemodel,thatinturnstrainstheLLMusingreinforcementlearning.RLHFcanbecomplementedwithmechanismstoassessconfidenceduringcontentgenerationtoalertmodeldevelopersorapplicationdeployerstoriskswherehumanverificationandvalidationisrequired.
24RAGisatechniquethathelpsmodelsprovidemorecontextuallyappropriateandcurrentresponsesthatarespecifictoanorganisationorindustry.ThisisdonebylinkinggenerativeAIservicestoexternalresources,therebygivingmodelssourcestociteandenhancingtheaccuracyandreliabilityofgenerativeAImodelswithfactsfetchedfromtrustedsources.
14
MODELAIGOVERNANCEFRAMEWORKFORGENERATIVEAI
standardisingdisclosurewillfacilitatecomparabilityacrossmodelsandpromotesafermodeluse.Relevanta
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中學(xué)學(xué)生家長委員會(huì)制度
- 企業(yè)辦公設(shè)備采購管理制度
- 2026年物流管理專業(yè)考試供應(yīng)鏈管理與優(yōu)化題目
- 2026年心理咨詢室干預(yù)流程實(shí)操題目
- 2026年體育產(chǎn)業(yè)發(fā)展趨勢(shì)下的教練員專業(yè)素質(zhì)測(cè)試題
- 燙傷疤痕修復(fù)治療合同
- 傳聲港輿情優(yōu)化公司白皮書:汽車行業(yè)輿情優(yōu)化解決方案
- 護(hù)理應(yīng)急管理制度內(nèi)容
- 廣西來賓市2025-2026學(xué)年高二上學(xué)期期末模擬卷(一)地理試卷(含部分解析)
- 2025年湖北科技職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試模擬測(cè)試卷附答案解析
- 2026年齊齊哈爾高等師范專科學(xué)校單招職業(yè)技能測(cè)試題庫必考題
- 物業(yè)項(xiàng)目綜合服務(wù)方案
- 胖東來管理制度全公開執(zhí)行標(biāo)準(zhǔn)
- 2025-2026學(xué)年北京市西城區(qū)初二(上期)期末考試物理試卷(含答案)
- 書法培訓(xùn)班安全制度
- 企業(yè)管理 華為會(huì)議接待全流程手冊(cè)SOP
- 供水企業(yè)制度流程規(guī)范
- 框架柱混凝土澆筑施工方案(完整版)
- 電廠危化品安全培訓(xùn)課件
- 酸馬奶加工技術(shù)
- 護(hù)士常用設(shè)備儀器培訓(xùn)
評(píng)論
0/150
提交評(píng)論