重慶市南開(融僑)中學中考二模數(shù)學試題及答案解析_第1頁
重慶市南開(融僑)中學中考二模數(shù)學試題及答案解析_第2頁
重慶市南開(融僑)中學中考二模數(shù)學試題及答案解析_第3頁
重慶市南開(融僑)中學中考二模數(shù)學試題及答案解析_第4頁
重慶市南開(融僑)中學中考二模數(shù)學試題及答案解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

重慶市南開(融僑)中學中考二模數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,l1∥l2,AF:FB=3:5,BC:CD=3:2,則AE:EC=()A.5:2 B.4:3 C.2:1 D.3:22.下列計算正確的是()A.a(chǎn)2?a3=a5B.2a+a2=3a3C.(﹣a3)3=a6D.a(chǎn)2÷a=23.下列各類數(shù)中,與數(shù)軸上的點存在一一對應關系的是()A.有理數(shù)B.實數(shù)C.分數(shù)D.整數(shù)4.下列圖形中,屬于中心對稱圖形的是()A. B.C. D.5.為了解某校初三學生的體重情況,從中隨機抽取了80名初三學生的體重進行統(tǒng)計分析,在此問題中,樣本是指()A.80 B.被抽取的80名初三學生C.被抽取的80名初三學生的體重 D.該校初三學生的體重6.下列運算正確的是()A.a(chǎn)2?a4=a8 B.2a2+a2=3a4 C.a(chǎn)6÷a2=a3 D.(ab2)3=a3b67.一元二次方程的根的情況是()A.有一個實數(shù)根 B.有兩個相等的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根8.一塊等邊三角形的木板,邊長為1,現(xiàn)將木板沿水平線翻滾(如圖),那么B點從開始至結(jié)束所走過的路徑長度為()A. B. C.4 D.2+9.如圖,AB是⊙O的弦,半徑OC⊥AB于D,若CD=2,⊙O的半徑為5,那么AB的長為()A.3 B.4 C.6 D.810.下列四個幾何體,正視圖與其它三個不同的幾何體是()A. B.C. D.11.加工爆米花時,爆開且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”.在特定條件下,可食用率p與加工時間t(單位:分鐘)滿足的函數(shù)關系p=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三次實驗的數(shù)據(jù).根據(jù)上述函數(shù)模型和實驗數(shù)據(jù),可得到最佳加工時間為()A.4.25分鐘 B.4.00分鐘 C.3.75分鐘 D.3.50分鐘12.2017年我國大學生畢業(yè)人數(shù)將達到7490000人,這個數(shù)據(jù)用科學記數(shù)法表示為()A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×107二、填空題:(本大題共6個小題,每小題4分,共24分.)13.等腰中,是BC邊上的高,且,則等腰底角的度數(shù)為__________.14.化簡3m﹣2(m﹣n)的結(jié)果為_____.15.如圖,正方形ABCD的邊長為,點E在對角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為點F,則EF的長是__________.16.若一個棱柱有7個面,則它是______棱柱.17.一艘貨輪以182km/h的速度在海面上沿正東方向航行,當行駛至A處時,發(fā)現(xiàn)它的東南方向有一燈塔B,貨輪繼續(xù)向東航行30分鐘后到達C處,發(fā)現(xiàn)燈塔B在它的南偏東15°方向,則此時貨輪與燈塔B的距離是________km.18.如圖,在正方形ABCD中,AD=5,點E,F(xiàn)是正方形ABCD內(nèi)的兩點,且AE=FC=3,BE=DF=4,則EF的長為__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)制作一種產(chǎn)品,需先將材料加熱達到60℃后,再進行操作,設該材料溫度為y(℃)從加熱開始計算的時間為x(min).據(jù)了解,當該材料加熱時,溫度y與時間x成一次函數(shù)關系:停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知在操作加熱前的溫度為15℃,加熱5分鐘后溫度達到60℃.分別求出將材料加熱和停止加熱進行操作時,y與x的函數(shù)關系式;根據(jù)工藝要求,當材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?20.(6分)已知圓O的半徑長為2,點A、B、C為圓O上三點,弦BC=AO,點D為BC的中點,(1)如圖,連接AC、OD,設∠OAC=α,請用α表示∠AOD;(2)如圖,當點B為的中點時,求點A、D之間的距離:(3)如果AD的延長線與圓O交于點E,以O為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長.21.(6分)如圖,已知某水庫大壩的橫斷面是梯形ABCD,壩頂寬AD是6米,壩高14米,背水坡AB的坡度為1:3,迎水坡CD的坡度為1:1.求:(1)背水坡AB的長度.(1)壩底BC的長度.22.(8分)如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.求證:DE是⊙O的切線.求DE的長.23.(8分)已知點E為正方形ABCD的邊AD上一點,連接BE,過點C作CN⊥BE,垂足為M,交AB于點N.(1)求證:△ABE≌△BCN;(2)若N為AB的中點,求tan∠ABE.24.(10分)已知:如圖,在平面直角坐標系xOy中,拋物線的圖像與x軸交于點A(3,0),與y軸交于點B,頂點C在直線上,將拋物線沿射線AC的方向平移,當頂點C恰好落在y軸上的點D處時,點B落在點E處.(1)求這個拋物線的解析式;(2)求平移過程中線段BC所掃過的面積;(3)已知點F在x軸上,點G在坐標平面內(nèi),且以點C、E、F、G為頂點的四邊形是矩形,求點F的坐標.25.(10分)如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑;(3)在(2)的條件下,若點B等分半圓CD,求DE的長.26.(12分)計算:()﹣2﹣+(﹣2)0+|2﹣|27.(12分)(1)(﹣2)2+2sin45°﹣(2)解不等式組,并將其解集在如圖所示的數(shù)軸上表示出來.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

依據(jù)平行線分線段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根據(jù)平行線分線段成比例定理,即可得出AE與EC的比值.【詳解】∵l1∥l2,∴,設AG=3x,BD=5x,∵BC:CD=3:2,∴CD=BD=2x,∵AG∥CD,∴.故選D.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應線段成比例.平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.2、A【解析】

直接利用合并同類項法則以及積的乘方運算法則、整式的除法運算法則分別計算得出答案.【詳解】A、a2?a3=a5,故此選項正確;B、2a+a2,無法計算,故此選項錯誤;C、(-a3)3=-a9,故此選項錯誤;D、a2÷a=a,故此選項錯誤;故選A.【點睛】此題主要考查了合并同類項以及積的乘方運算、整式的除法運算,正確掌握相關運算法則是解題關鍵.3、B【解析】

根據(jù)實數(shù)與數(shù)軸上的點存在一一對應關系解答.【詳解】實數(shù)與數(shù)軸上的點存在一一對應關系,故選:B.【點睛】本題考查了實數(shù)與數(shù)軸上點的關系,每一個實數(shù)都可以用數(shù)軸上唯一的點來表示,反過來,數(shù)軸上的每個點都表示一個唯一的實數(shù),也就是說實數(shù)與數(shù)軸上的點一一對應.4、B【解析】

A、將此圖形繞任意點旋轉(zhuǎn)180度都不能與原圖重合,所以這個圖形不是中心對稱圖形.【詳解】A、將此圖形繞任意點旋轉(zhuǎn)180度都不能與原圖重合,所以這個圖形不是中心對稱圖形;B、將此圖形繞中心點旋轉(zhuǎn)180度與原圖重合,所以這個圖形是中心對稱圖形;C、將此圖形繞任意點旋轉(zhuǎn)180度都不能與原圖重合,所以這個圖形不是中心對稱圖形;D、將此圖形繞任意點旋轉(zhuǎn)180度都不能與原圖重合,所以這個圖形不是中心對稱圖形.故選B.【點睛】本題考查了軸對稱與中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.5、C【解析】

總體是指考查的對象的全體,個體是總體中的每一個考查的對象,樣本是總體中所抽取的一部分個體,而樣本容量則是指樣本中個體的數(shù)目.我們在區(qū)分總體、個體、樣本、樣本容量,這四個概念時,首先找出考查的對象.從而找出總體、個體.再根據(jù)被收集數(shù)據(jù)的這一部分對象找出樣本,最后再根據(jù)樣本確定出樣本容量.【詳解】樣本是被抽取的80名初三學生的體重,

故選C.【點睛】此題考查了總體、個體、樣本、樣本容量,解題要分清具體問題中的總體、個體與樣本,關鍵是明確考查的對象.總體、個體與樣本的考查對象是相同的,所不同的是范圍的大?。畼颖救萘渴菢颖局邪膫€體的數(shù)目,不能帶單位.6、D【解析】根據(jù)同底數(shù)冪的乘法,合并同類項,同底數(shù)冪的除法,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、a2?a4=a6,故此選項錯誤;B、2a2+a2=3a2,故此選項錯誤;C、a6÷a2=a4,故此選項錯誤;D、(ab2)3=a3b6,故此選項正確..故選D.考點:同底數(shù)冪的乘法,合并同類項,同底數(shù)冪的除法,冪的乘方與積的乘方.7、D【解析】試題分析:△=22-4×4=-12<0,故沒有實數(shù)根;故選D.考點:根的判別式.8、B【解析】

根據(jù)題目的條件和圖形可以判斷點B分別以C和A為圓心CB和AB為半徑旋轉(zhuǎn)120°,并且所走過的兩路徑相等,求出一個乘以2即可得到.【詳解】如圖:BC=AB=AC=1,∠BCB′=120°,∴B點從開始至結(jié)束所走過的路徑長度為2×弧BB′=2×.故選B.9、D【解析】

連接OA,構(gòu)建直角三角形AOD;利用垂徑定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的長度,從而求得AB=2AD=1.【詳解】連接OA.∵⊙O的半徑為5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=AB;在直角三角形ODC中,根據(jù)勾股定理,得AD==4,∴AB=1.故選D.【點睛】本題考查了垂徑定理、勾股定理.解答該題的關鍵是通過作輔助線OA構(gòu)建直角三角形,在直角三角形中利用勾股定理求相關線段的長度.10、C【解析】

根據(jù)幾何體的三視圖畫法先畫出物體的正視圖再解答.【詳解】解:A、B、D三個幾何體的主視圖是由左上一個正方形、下方兩個正方形構(gòu)成的,而C選項的幾何體是由上方2個正方形、下方2個正方形構(gòu)成的,故選:C.【點睛】此題重點考查學生對幾何體三視圖的理解,掌握幾何體的主視圖是解題的關鍵.11、C【解析】

根據(jù)題目數(shù)據(jù)求出函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)可得.【詳解】根據(jù)題意,將(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:解得:a=?0.2,b=1.5,c=?2,即p=?0.2t2+1.5t?2,當t=?=3.75時,p取得最大值,故選C.【點睛】本題考查了二次函數(shù)的應用,熟練掌握性質(zhì)是解題的關鍵.12、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】7490000=7.49×106.故選C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、,,【解析】

分三種情況:①點A是頂角頂點時,②點A是底角頂點,且AD在△ABC外部時,③點A是底角頂點,且AD在△ABC內(nèi)部時,再結(jié)合直角三角形中,30°的角所對的直角邊等于斜邊的一半即可求解.【詳解】①如圖,若點A是頂角頂點時,∵AB=AC,AD⊥BC,∴BD=CD,∵,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=;②如圖,若點A是底角頂點,且AD在△ABC外部時,∵,AC=BC,∴,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如圖,若點A是底角頂點,且AD在△ABC內(nèi)部時,∵,AC=BC,∴,∴∠C=30°,∴∠BAC=∠ABC=(180°-30°)=75°;綜上所述,△ABC底角的度數(shù)為45°或15°或75°;故答案為,,.【點睛】本題考查了等腰三角形的性質(zhì)和直角三角形中30°的角所對的直角邊等于斜邊的一半的性質(zhì),解題的關鍵是要分情況討論.14、m+2n【解析】分析:先去括號,再合并同類項即可得.詳解:原式=3m-2m+2n=m+2n,故答案為:m+2n.點睛:本題主要考查整式的加減,解題的關鍵是掌握去括號與合并同類項的法則.15、2【解析】

設EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【詳解】設EF=x,

∵四邊形ABCD是正方形,

∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,

∴BD=AB=4+4,EF=BF=x,

∴BE=x,

∵∠BAE=22.5°,

∴∠DAE=90°-22.5°=67.5°,

∴∠AED=180°-45°-67.5°=67.5°,

∴∠AED=∠DAE,

∴AD=ED,

∴BD=BE+ED=x+4+2=4+4,

解得:x=2,

即EF=2.16、5【解析】分析:根據(jù)n棱柱的特點,由n個側(cè)面和兩個底面構(gòu)成,可判斷.詳解:由題意可知:7-2=5.故答案為5.點睛:此題主要考查了棱柱的概念,根據(jù)棱柱的底面和側(cè)面的關系求解是解題關鍵.17、1【解析】

作CE⊥AB于E,根據(jù)題意求出AC的長,根據(jù)正弦的定義求出CE,根據(jù)三角形的外角的性質(zhì)求出∠B的度數(shù),根據(jù)正弦的定義計算即可.【詳解】作CE⊥AB于E,12km/h×30分鐘=92km,∴AC=92km,∵∠CAB=45°,∴CE=AC?sin45°=9km,∵燈塔B在它的南偏東15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC=CEsin∠B=故答案為:1.【點睛】本題考查的是解直角三角形的應用-方向角問題,正確標注方向角、熟記銳角三角函數(shù)的定義是解題的關鍵.18、【解析】分析:延長AE交DF于G,再根據(jù)全等三角形的判定得出△AGD與△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根據(jù)勾股定理得出EF的長.詳解:延長AE交DF于G,如圖,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=.故答案為.點睛:本題考查了正方形的性質(zhì),關鍵是根據(jù)全等三角形的判定和性質(zhì)得出EG=FG=1,再利用勾股定理計算.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)20分鐘.【解析】

(1)材料加熱時,設y=ax+15(a≠0),由題意得60=5a+15,解得a=9,則材料加熱時,y與x的函數(shù)關系式為y=9x+15(0≤x≤5).停止加熱時,設y=(k≠0),由題意得60=,解得k=300,則停止加熱進行操作時y與x的函數(shù)關系式為y=(x≥5);(2)把y=15代入y=,得x=20,因此從開始加熱到停止操作,共經(jīng)歷了20分鐘.答:從開始加熱到停止操作,共經(jīng)歷了20分鐘.20、(1);(2);(3)【解析】

(1)連接OB、OC,可證△OBC是等邊三角形,根據(jù)垂徑定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的內(nèi)角和定理即可表示出∠AOD的值.(2)連接OB、OC,可證△OBC是等邊三角形,根據(jù)垂徑定理可得∠DOB等于30°,因為點D為BC的中點,則∠AOB=∠BOC=60°,所以∠AOD等于90°,根據(jù)OA=OB=2,在直角三角形中用三角函數(shù)及勾股定理即可求得OD、AD的長.(3)分兩種情況討論:兩圓外切,兩圓內(nèi)切.先根據(jù)兩圓相切時圓心距與兩圓半徑的關系,求出AD的長,再過O點作AE的垂線,利用勾股定理列出方程即可求解.【詳解】(1)如圖1:連接OB、OC.∵BC=AO∴OB=OC=BC∴△OBC是等邊三角形∴∠BOC=60°∵點D是BC的中點∴∠BOD=∵OA=OC∴=α∴∠AOD=180°-α-α-=150°-2α(2)如圖2:連接OB、OC、OD.由(1)可得:△OBC是等邊三角形,∠BOD=∵OB=2,∴OD=OB?cos=∵B為的中點,∴∠AOB=∠BOC=60°∴∠AOD=90°根據(jù)勾股定理得:AD=(3)①如圖3.圓O與圓D相內(nèi)切時:連接OB、OC,過O點作OF⊥AE∵BC是直徑,D是BC的中點∴以BC為直徑的圓的圓心為D點由(2)可得:OD=,圓D的半徑為1∴AD=設AF=x在Rt△AFO和Rt△DOF中,即解得:∴AE=②如圖4.圓O與圓D相外切時:連接OB、OC,過O點作OF⊥AE∵BC是直徑,D是BC的中點∴以BC為直徑的圓的圓心為D點由(2)可得:OD=,圓D的半徑為1∴AD=在Rt△AFO和Rt△DOF中,即解得:∴AE=【點睛】本題主要考查圓的相關知識:垂徑定理,圓與圓相切的條件,關鍵是能靈活運用垂徑定理和勾股定理相結(jié)合思考問題,另外需注意圓相切要分內(nèi)切與外切兩種情況.21、(1)背水坡的長度為米;(1)壩底的長度為116米.【解析】

(1)分別過點、作,垂足分別為點、,結(jié)合題意求得AM,MN,在中,得BM,再利用勾股定理即可.(1)在中,求得CN即可得到BC.【詳解】(1)分別過點、作,垂足分別為點、,根據(jù)題意,可知(米),(米)在中∵,∴(米),∵,∴(米).答:背水坡的長度為米.(1)在中,,∴(米),∴(米)答:壩底的長度為116米.【點睛】本題考查的知識點是解直角三角形的應用-坡度坡角問題,解題的關鍵是熟練的掌握解直角三角形的應用-坡度坡角問題.22、(1)詳見解析;(2)4.【解析】試題分析:(1)連結(jié)OD,由AD平分∠BAC,OA=OD,可證得∠ODA=∠DAE,由平行線的性質(zhì)可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切線;(2)過點O作OF⊥AC于點F,由垂徑定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四邊形OFED是矩形,即可得DE=OF=4.試題解析:(1)連結(jié)OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切線;(2)過點O作OF⊥AC于點F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四邊形OFED是矩形,∴DE=OF=4.考點:切線的判定;垂徑定理;勾股定理;矩形的判定及性質(zhì).23、(1)證明見解析;(2)1【解析】

(1)根據(jù)正方形的性質(zhì)得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根據(jù)垂線和三角形內(nèi)角和定理得到∠2+∠3=90°,推出∠1=∠3,根據(jù)ASA推出△ABE≌△BCN;(2)tan∠ABE=AEAB【詳解】(1)證明:∵四邊形ABCD為正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∠A=∴△ABE≌△BCN(ASA);(2)∵N為AB中點,∴BN=12又∵△ABE≌△BCN,∴AE=BN=12在Rt△ABE中,tan∠ABE═AEAB【點睛】本題主要考查了正方形的性質(zhì)、三角形的內(nèi)角和定理、垂線、全等三角形的性質(zhì)和判定以及銳角三角函數(shù)等知識點的掌握和理解,證出△ABE≌△BCN是解此題的關鍵.24、(1)拋物線的解析式為;(2)12;(1)滿足條件的點有F1(,0),F(xiàn)2(,0),F(xiàn)1(,0),F(xiàn)4(,0).【解析】分析:(1)根據(jù)對稱軸方程求得b=﹣4a,將點A的坐標代入函數(shù)解析式求得9a+1b+1=0,聯(lián)立方程組,求得系數(shù)的值即可;(2)拋物線在平移的過程中,線段BC所掃過的面積為平行四邊形BCDE的面積,根據(jù)二次函數(shù)圖象上點的坐標特征和三角形的面積得到:∴.(1)聯(lián)結(jié)CE.分類討論:(i)當CE為矩形的一邊時,過點C作CF1⊥CE,交x軸于點F1,設點F1(a,0).在Rt△OCF1中,利用勾股定理求得a的值;(ii)當CE為矩形的對角線時,以點O為圓心,OC長為半徑畫弧分別交x軸于點F1、F4,利用圓的性質(zhì)解答.詳解:(1)∵頂點C在直線x=2上,∴,∴b=﹣4a.將A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=﹣4,∴拋物線的解析式為y=x2﹣4x+1.(2)過點C作CM⊥x軸,CN⊥y軸,垂足分別為M、N.∵y=x2﹣4x+1═(x﹣2)2﹣1,∴C(2,﹣1).∵CM=MA=1,∴∠MAC=45°,∴∠ODA=45°,∴OD=OA=1.∵拋物線y=x2﹣4x+1與y軸交于點B,∴B(0,1),∴BD=2.∵拋物線在平移的過程中,線段BC所掃過的面積為平行四邊形BCDE的面積,∴.(1)聯(lián)結(jié)CE.∵四邊形BCDE是平行四邊形,∴點O是對角線CE與BD的交點,即.(i)當CE為矩形的一邊時,過點C作CF1⊥CE,交x軸于點F1,設點F1(a,0).在Rt△OCF1中,,即a2=(a﹣2)2+5,解得:,∴點.同理,得點;(ii)當CE為矩形的對角線時,以點O為圓心,OC長為半徑畫弧分別交x軸于點F1、F4,可得:,得點、.綜上所述:滿足條件的點有),.點睛:本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象上點的坐標特征,平行四邊形的面積公式,正確的理解題意是解題的關鍵.25、(1)證明見解析;(2);(3);【解析】

(1)連接

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論