北京市豐臺區(qū)北京十二中2025屆數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第1頁
北京市豐臺區(qū)北京十二中2025屆數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第2頁
北京市豐臺區(qū)北京十二中2025屆數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第3頁
北京市豐臺區(qū)北京十二中2025屆數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第4頁
北京市豐臺區(qū)北京十二中2025屆數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京市豐臺區(qū)北京十二中2025屆數(shù)學(xué)高一下期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線是平面的斜線,則內(nèi)不存在與(

)A.相交的直線 B.平行的直線C.異面的直線 D.垂直的直線2.下列極限為1的是()A.(個9) B.C. D.3.設(shè)全集,集合,,則()A. B.C. D.4.設(shè)定義域為的奇函數(shù)是增函數(shù),若對恒成立,則實數(shù)的取值范圍是()A. B. C. D.5.如圖,在中,,是邊上的高,平面,則圖中直角三角形的個數(shù)是()A. B. C. D.6.某廠家生產(chǎn)甲、乙、丙三種不同類型的飲品?產(chǎn)量之比為2:3:4.為檢驗該廠家產(chǎn)品質(zhì)量,用分層抽樣的方法抽取一個容量為72的樣本,則樣本中乙類型飲品的數(shù)量為A.16 B.24 C.32 D.487.在數(shù)列中,,且數(shù)列是等比數(shù)列,其公比,則數(shù)列的最大項等于()A. B. C.或 D.8.設(shè),,則下列不等式成立的是()A. B. C. D.9.已知函數(shù)的部分圖象如圖所示,則()A. B.C. D.10.函數(shù)的定義域為R,數(shù)列是公差為的等差數(shù)列,若,,則()A.恒為負數(shù) B.恒為正數(shù)C.當時,恒為正數(shù);當時,恒為負數(shù) D.當時,恒為負數(shù);當時,恒為正數(shù)二、填空題:本大題共6小題,每小題5分,共30分。11.已知平面向量,,滿足:,且,則的最小值為____.12.函數(shù),的圖象與直線y=k有且僅有兩個不同的交點,則k的取值范圍是_____.13.設(shè)為,的反函數(shù),則的值域為______.14.已知點A(-a,0),B(a,0)(a>0),若圓(x-2)2+(y-2)2=2上存在點C15.設(shè)α為第二象限角,若sinα=3516.若過點作圓的切線,則直線的方程為_______________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)解不等式;(2)若對一切,不等式恒成立,求實數(shù)的取值范圍.18.在平面直角坐標系中,曲線與坐標軸的交點都在圓上.(1)求圓的方程;(2)若圓與直線交于,兩點,且,求的值.19.已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)求在區(qū)間上的最值.20.函數(shù).(1)求函數(shù)的周期和遞增區(qū)間;(2)若,求函數(shù)的值域.21.在銳角三角形中,內(nèi)角的對邊分別為且.(1)求角的大小;(2)若,,求△的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)平面的斜線的定義,即可作出判定,得到答案.【詳解】由題意,直線是平面的斜線,由斜線的定義可知與平面相交但不垂直的直線叫做平面的斜線,所以在平面內(nèi)肯定不存在與直線平行的直線.故答案為:B【點睛】本題主要考查了直線與平面的位置關(guān)系的判定及應(yīng)用,其中解答中熟記平面斜線的定義是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.2、A【解析】

利用極限的運算逐項求解判斷即可【詳解】對于A項,極限為1,對于B項,極限不存在,對于C項,極限為1.對于D項,,故選:A.【點睛】本題考查的極限的運算及性質(zhì),準確計算是關(guān)鍵,是基礎(chǔ)題3、A【解析】

進行交集、補集的運算即可.【詳解】?UB={x|﹣2<x<1};∴A∩(?UB)={x|﹣1<x<1}.故選:A.【點睛】考查描述法的定義,以及交集、補集的運算.4、A【解析】

由題意可得,即為,可得恒成立,討論是否為0,結(jié)合換元法和基本不等式,可得所求范圍.【詳解】解:由題意可得,即為,可得恒成立,當時,上式顯然成立;當時,可得,設(shè),,可得,由,可得,可得,即,故選:A.【點睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的運用,考查不等式恒成立問題解法,注意運用參數(shù)分離和換元法,考查化簡運算能力,屬于中檔題.5、C【解析】

根據(jù)線面垂直得出一些相交直線垂直,以及找出題中一些已知的相交直線垂直,由這些條件找出圖中的直角三角形.【詳解】①平面,,都是直角三角形;②是直角三角形;③是直角三角形;④由得平面,可知:也是直角三角形.綜上可知:直角三角形的個數(shù)是個,故選C.【點睛】本題考查直角三角形個數(shù)的確定,考查相交直線垂直,解題時可以充分利用直線與平面垂直的性質(zhì)得到,考查推理能力,屬于中等題.6、B【解析】

根據(jù)分層抽樣各層在總體的比例與在樣本的比例相同求解.【詳解】因為分層抽樣總體和各層的抽樣比例相同,所以各層在總體的比例與在樣本的比例相同,所以樣本中乙類型飲品的數(shù)量為.故選B.【點睛】本題考查分層抽樣,依據(jù)分層抽樣總體和各層的抽樣比例相同.7、C【解析】

在數(shù)列中,,,且數(shù)列是等比數(shù)列,其公比,利用等比數(shù)列的通項公式可得:.可得,利用二次函數(shù)的單調(diào)性即可得出.【詳解】在數(shù)列中,,,且數(shù)列是等比數(shù)列,其公比,.,.由或8時,,或9時,,數(shù)列的最大項等于或.故選:C.【點睛】本題考查等比數(shù)列的通項公式、累乘法、二次函數(shù)的單調(diào)性,考查推理能力與計算能力,屬于中檔題.8、D【解析】試題分析:本題是選擇題,可采用逐一檢驗,利用特殊值法進行檢驗,很快問題得以解決.解:∵a>b,c>d;∴設(shè)a=1,b=-1,c=-2,d=-5,選項A,1-(-2)>-1-(-5),不成立;選項B,1(-2)>(-1)(-5),不成立;取選項C,,不成立,故選D考點:不等式的性質(zhì)點評:本題主要考查了基本不等式,基本不等式在考綱中是C級要求,本題屬于基礎(chǔ)題9、D【解析】

由函數(shù)的最值求出A,由周期求出,由五點法作圖求出的值,從而得出結(jié)論.【詳解】根據(jù)函數(shù)的圖象求出函數(shù)的周期,然后可以求出,通過函數(shù)經(jīng)過的最大值點求出值,即可得到函數(shù)的解析式.由函數(shù)的圖象可知:,

.

當,函數(shù)取得最大值1,所以,

,

故選D.10、A【解析】

由函數(shù)的解析式可得函數(shù)是奇函數(shù),且為單調(diào)遞增函數(shù),分和兩種情況討論,分別利用函數(shù)的奇偶性和單調(diào)性,即可求解,得到結(jié)論.【詳解】由題意,因為函數(shù),根據(jù)冪函數(shù)和反正切函數(shù)的性質(zhì),可得函數(shù)在為單調(diào)遞增函數(shù),且滿足,所以函數(shù)為奇函數(shù),因為數(shù)列是公差為的等差數(shù)列,且,則①當時,由,可得,所以,所以,同理可得:,所以,②當時,由,則,所以綜上可得,實數(shù)恒為負數(shù).故選:A.【點睛】本題主要考查了函數(shù)的單調(diào)性與奇偶性的應(yīng)用,以及等差數(shù)列的性質(zhì)的應(yīng)用,其中解答中合理利用等差數(shù)列的性質(zhì)和函數(shù)的性質(zhì)求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.二、填空題:本大題共6小題,每小題5分,共30分。11、-1【解析】

,,,由經(jīng)過向量運算得,知點在以為圓心,1為半徑的圓上,這樣,只要最小,就可化簡.【詳解】如圖,,則,設(shè)是中點,則,∵,∴,即,,記,則點在以為圓心,1為半徑的圓上,記,,注意到,因此當與反向時,最小,∴.∴最小值為-1.故答案為-1.【點睛】本題考查平面向量的數(shù)量積,解題關(guān)鍵是由已知得出點軌跡(讓表示的有向線段的起點都是原點)是圓,然后分析出只有最小時,才可能最?。畯亩玫浇忸}方法.12、【解析】

作出其圖像,可只有兩個交點時k的范圍為.故答案為13、【解析】

求出原函數(shù)的值域可得出其反函數(shù)的定義域,取交集可得出函數(shù)的定義域,再由函數(shù)的單調(diào)性可求出該函數(shù)的值域.【詳解】函數(shù)在上為增函數(shù),則函數(shù)的值域為,所以,函數(shù)的定義域為.函數(shù)的定義域為,由于函數(shù)與函數(shù)單調(diào)性相同,可知,函數(shù)在上為增函數(shù).當時,函數(shù)取得最小值;當時,函數(shù)取得最大值.因此,函數(shù)的值域為.故答案為:.【點睛】本題考查函數(shù)值域的求解,考查函數(shù)單調(diào)性的應(yīng)用,明確兩個互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性是解題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.14、3【解析】

利用參數(shù)方程假設(shè)C點坐標,表示出AC和BC,利用AC?BC=0可得到a【詳解】設(shè)C∴∵∠ACB=90°∴∴當sinα+∴0<a≤3本題正確結(jié)果:3【點睛】本題考查圓中參數(shù)范圍求解的問題,關(guān)鍵是能夠利用圓的參數(shù)方程,利用向量數(shù)量積及三角函數(shù)關(guān)系求得最值.15、-【解析】

先求出cosα,再利用二倍角公式求sin2α【詳解】因為α為第二象限角,若sinα=所以cosα=所以sin2α故答案為-【點睛】本題主要考查同角三角函數(shù)的平方關(guān)系,考查二倍角的正弦公式,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.16、或【解析】

討論斜率不存在時是否有切線,當斜率存在時,運用點到直線距離等于半徑求出斜率【詳解】圓即①當斜率不存在時,為圓的切線②當斜率存在時,設(shè)切線方程為即,解得此時切線方程為,即綜上所述,則直線的方程為或【點睛】本題主要考查了過圓外一點求切線方程,在求解過程中先討論斜率不存在的情況,然后討論斜率存在的情況,利用點到直線距離公式求出結(jié)果,較為基礎(chǔ)。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)根據(jù)一元二次不等式的求解方法直接求解即可;(2)將問題轉(zhuǎn)化為恒成立的問題,通過基本不等式求得的最小值,則.【詳解】(1)或所求不等式解集為:(2)當時,可化為:又(當且僅當,即時取等號)即的取值范圍為:【點睛】本題考查一元二次不等式的求解、恒成立問題的求解問題.解決恒成立問題的關(guān)鍵是通過分離變量的方式,將問題轉(zhuǎn)化為所求參數(shù)與函數(shù)最值之間的比較問題.18、(1);(2).【解析】分析:(1)因為曲線與坐標軸的交點都在圓上,所以要求圓的方程應(yīng)求曲線與坐標軸的三個交點.曲線與軸的交點為,與軸的交點為.由與軸的交點為關(guān)于點(3,0)對稱,故可設(shè)圓的圓心為,由兩點間距離公式可得,解得.進而可求得圓的半徑為,然后可求圓的方程為.(2)設(shè),,由可得,進而可得,減少變量個數(shù).因為,,所以.要求值,故將直線與圓的方程聯(lián)立可得,消去,得方程.因為直線與圓有兩個交點,故判別式,由根與系數(shù)的關(guān)系可得,.代入,化簡可求得,滿足,故.詳解:(1)曲線與軸的交點為,與軸的交點為.故可設(shè)的圓心為,則有,解得.則圓的半徑為,所以圓的方程為.(2)設(shè),,其坐標滿足方程組消去,得方程.由已知可得,判別式,且,.由于,可得.又,所以.由得,滿足,故.點睛:⑴求圓的方程一般有兩種方法:①待定系數(shù)法:如條件和圓心或半徑有關(guān),可設(shè)圓的方程為標準方程,再代入條件可求方程;如已知圓過兩點或三點,可設(shè)圓的方程為一般方程,再根據(jù)條件求方程;②幾何方法:利用圓的性質(zhì),如圓的弦的垂直平分線經(jīng)過圓心,最長的弦為直徑,圓心到切線的距離等于半徑.(2)直線與圓或圓錐曲線交于,兩點,若,應(yīng)設(shè),,可得.可將直線與圓或圓錐曲線的方程聯(lián)立消去,得關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系得兩根和與兩根積,代入,化簡求值.19、(1);(2)最大值為,最小值為.【解析】

(1)利用兩角和的正弦公式以及二倍角的余弦公式、兩角和的余弦公式將函數(shù)的解析式化簡為,然后解不等式可得出函數(shù)的單調(diào)遞增區(qū)間;(2)由,可計算出,然后由余弦函數(shù)的基本性質(zhì)可求出函數(shù)在區(qū)間上的最大值和最小值.【詳解】(1),解不等式,得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)當時,.當時,函數(shù)取得最大值;當時,函數(shù)取得最小值.【點睛】本題考查三角函數(shù)單調(diào)區(qū)間以及在定區(qū)間上最值的求解,解題時要利用三角恒等變換思想將三角函數(shù)的解析式化簡,并借助正弦函數(shù)或余弦函數(shù)的基本性質(zhì)進行求解,考查分析問題和解決問題的能力,屬于中等題.20、(1)周期為,單調(diào)遞增區(qū)間為;(2).【解析】

(1)利用二倍角降冪公式、兩角差的正弦公式將函數(shù)的解析式化簡為,然后利用周期公式可計算出函數(shù)的周期,解不等式即可得出函數(shù)的單調(diào)遞增區(qū)間;(2)由計算出的取值范圍,可得出的范圍,進而可得出函數(shù)的值域.【詳解】(1),所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論