山東省濟(jì)南市2024年中考聯(lián)考數(shù)學(xué)試題含解析_第1頁
山東省濟(jì)南市2024年中考聯(lián)考數(shù)學(xué)試題含解析_第2頁
山東省濟(jì)南市2024年中考聯(lián)考數(shù)學(xué)試題含解析_第3頁
山東省濟(jì)南市2024年中考聯(lián)考數(shù)學(xué)試題含解析_第4頁
山東省濟(jì)南市2024年中考聯(lián)考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省濟(jì)南市2024年中考聯(lián)考數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,直線y=34x+3交x軸于A點(diǎn),將一塊等腰直角三角形紙板的直角頂點(diǎn)置于原點(diǎn)O,另兩個頂點(diǎn)M、N恰落在直線y=3A.17 B.16 C.12.已知兩組數(shù)據(jù),2、3、4和3、4、5,那么下列說法正確的是()A.中位數(shù)不相等,方差不相等B.平均數(shù)相等,方差不相等C.中位數(shù)不相等,平均數(shù)相等D.平均數(shù)不相等,方差相等3.如圖,在正方形網(wǎng)格中建立平面直角坐標(biāo)系,若A0,2,BA.1,-2 B.1,-1 C.2,-1 D.2,14.某大學(xué)生利用課余時間在網(wǎng)上銷售一種成本為50元/件的商品,每月的銷售量y(件)與銷售單價x(元/件)之間的函數(shù)關(guān)系式為y=–4x+440,要獲得最大利潤,該商品的售價應(yīng)定為A.60元B.70元C.80元D.90元5.若是關(guān)于x的方程的一個根,則方程的另一個根是()A.9 B.4 C.4 D.36.下列運(yùn)算正確的是()A. B. C. D.7.若分式有意義,則a的取值范圍是()A.a(chǎn)≠1 B.a(chǎn)≠0 C.a(chǎn)≠1且a≠0 D.一切實(shí)數(shù)8.下列分子結(jié)構(gòu)模型的平面圖中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個9.四根長度分別為3,4,6,x(x為正整數(shù))的木棒,從中任取三根.首尾順次相接都能組成一個三角形,則().A.組成的三角形中周長最小為9 B.組成的三角形中周長最小為10C.組成的三角形中周長最大為19 D.組成的三角形中周長最大為1610.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.21二、填空題(本大題共6個小題,每小題3分,共18分)11.因式分解:(a+1)(a﹣1)﹣2a+2=_____.12.如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點(diǎn),將△ABP沿BP翻折至△EBP,PE與CD相交于點(diǎn)O,BE與CD相交于點(diǎn)G,且OE=OD,則AP的長為__________.13.計算:2sin245°﹣tan45°=______.14.已知二次函數(shù)的圖象如圖所示,若方程有兩個不相等的實(shí)數(shù)根,則的取值范圍是_____________.15.分解因式:___.16.如圖甲,對于平面上不大于90°的∠MON,我們給出如下定義:如果點(diǎn)P在∠MON的內(nèi)部,作PE⊥OM,PF⊥ON,垂足分別為點(diǎn)E、F,那么稱PE+PF的值為點(diǎn)P相對于∠MON的“點(diǎn)角距離”,記為d(P,∠MON).如圖乙,在平面直角坐標(biāo)系xOy中,點(diǎn)P在坐標(biāo)平面內(nèi),且點(diǎn)P的橫坐標(biāo)比縱坐標(biāo)大2,對于∠xOy,滿足d(P,∠xOy)=10,點(diǎn)P的坐標(biāo)是_____.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線段OA上一動點(diǎn)(與點(diǎn)O、A不重合),連接CP,過點(diǎn)P作PE⊥CP交AB于點(diǎn)D,且PE=PC,過點(diǎn)P作PF⊥OP且PF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.(1)直接寫出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):;(2)四邊形BFDE的面積記為S,當(dāng)t為何值時,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.18.(8分)甲、乙兩個人做游戲:在一個不透明的口袋中裝有1張相同的紙牌,它們分別標(biāo)有數(shù)字1,2,3,1.從中隨機(jī)摸出一張紙牌然后放回,再隨機(jī)摸出一張紙牌,若兩次摸出的紙牌上數(shù)字之和是3的倍數(shù),則甲勝;否則乙勝.這個游戲?qū)﹄p方公平嗎?請列表格或畫樹狀圖說明理由.19.(8分)如圖,已知正方形ABCD的邊長為4,點(diǎn)P是AB邊上的一個動點(diǎn),連接CP,過點(diǎn)P作PC的垂線交AD于點(diǎn)E,以PE為邊作正方形PEFG,頂點(diǎn)G在線段PC上,對角線EG、PF相交于點(diǎn)O.(1)若AP=1,則AE=;(2)①求證:點(diǎn)O一定在△APE的外接圓上;②當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動到點(diǎn)B時,點(diǎn)O也隨之運(yùn)動,求點(diǎn)O經(jīng)過的路徑長;(3)在點(diǎn)P從點(diǎn)A到點(diǎn)B的運(yùn)動過程中,△APE的外接圓的圓心也隨之運(yùn)動,求該圓心到AB邊的距離的最大值.20.(8分)第二十四屆冬季奧林匹克運(yùn)動會將于2022年2月4日至2月20日在北京舉行,北京將成為歷史上第一座既舉辦過夏奧會又舉辦過冬奧會的城市.某區(qū)舉辦了一次冬奧知識網(wǎng)上答題競賽,甲、乙兩校各有名學(xué)生參加活動,為了解這兩所學(xué)校的成績情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.[收集數(shù)據(jù)]從甲、乙兩校各隨機(jī)抽取名學(xué)生,在這次競賽中他們的成績?nèi)缦?甲:乙:[整理、描述數(shù)據(jù)]按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):學(xué)校人數(shù)成績甲乙(說明:優(yōu)秀成績?yōu)?,良好成績?yōu)楹细癯煽優(yōu)?)[分析數(shù)據(jù)]兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如下表所示:學(xué)校平均分中位數(shù)眾數(shù)甲乙其中.[得出結(jié)論](1)小明同學(xué)說:“這次競賽我得了分,在我們學(xué)校排名屬中游略偏上!”由表中數(shù)據(jù)可知小明是_校的學(xué)生;(填“甲”或“乙”)(2)張老師從乙校隨機(jī)抽取--名學(xué)生的競賽成績,試估計這名學(xué)生的競賽成績?yōu)閮?yōu)秀的概率為_;(3)根據(jù)以上數(shù)據(jù)推斷一所你認(rèn)為競賽成績較好的學(xué)校,并說明理由:;(至少從兩個不同的角度說明推斷的合理性)21.(8分)我們常用的數(shù)是十進(jìn)制數(shù),如,數(shù)要用10個數(shù)碼(又叫數(shù)字):0、1、2、3、4、5、6、7、8、9,在電子計算機(jī)中用的二進(jìn)制,只要兩個數(shù)碼:0和1,如二進(jìn)制中等于十進(jìn)制的數(shù)6,等于十進(jìn)制的數(shù)53.那么二進(jìn)制中的數(shù)101011等于十進(jìn)制中的哪個數(shù)?22.(10分)2018年大唐芙蓉園新春燈會以“鼓舞中華”為主題,既有新年韻味,又結(jié)合“一帶一路”展示了絲綢之路上古今文化經(jīng)貿(mào)繁榮的盛況。小麗的爸爸買了兩張門票,她和各個兩人都想去觀看,可是爸爸只能帶一人去,于是讀九年級的哥哥提議用他們3人吃飯的彩色筷子做游戲(筷子除顏色不同,其余均相同),其中小麗的筷子顏色是紅色,哥哥的是銀色,爸爸的是白色,將3人的3雙款子全部放在一個不透明的筷簍里搖勻,小麗隨機(jī)從筷簍里取出一根,記下顏色放回,然后哥哥同樣從筷簍里取出一根,若兩人取出的筷子顏色相同則小麗去,若不同,則哥哥去。(1)求小麗隨機(jī)取出一根筷子是紅色的概率;(2)請用列表或畫樹狀圖的方法求出小隨爸爸去看新春燈會的概率。23.(12分)某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動.某中學(xué)就“學(xué)生體育活動興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有______人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為______%,如果學(xué)校有800名學(xué)生,估計全校學(xué)生中有______人喜歡籃球項(xiàng)目.(2)請將條形統(tǒng)計圖補(bǔ)充完整.(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級參加?;@球隊(duì),請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.24.(1)解方程:x2﹣4x﹣3=0;(2)解不等式組:x-3(x-2)≤4

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

過O作OC⊥AB于C,過N作ND⊥OA于D,設(shè)N的坐標(biāo)是(x,34x+3),得出DN=34x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面積公式得出AO×OB=AB×OC,代入求出OC,根據(jù)sin45°=OCON,求出ON,在Rt△NDO中,由勾股定理得出(34x+3)2+(-x)2=(122【詳解】過O作OC⊥AB于C,過N作ND⊥OA于D,∵N在直線y=34∴設(shè)N的坐標(biāo)是(x,34則DN=34y=34當(dāng)x=0時,y=3,當(dāng)y=0時,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面積公式得:AO×OB=AB×OC,∴3×4=5OC,OC=125∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=OCON∴ON=122在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(34x+3)2+(-x)2=(1225解得:x1=-8425,x2=12∵N在第二象限,∴x只能是-842534x+3=12即ND=1225,OD=84tan∠AON=NDOD故選A.【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,勾股定理,三角形的面積,解直角三角形等知識點(diǎn)的運(yùn)用,主要考查學(xué)生運(yùn)用這些性質(zhì)進(jìn)行計算的能力,題目比較典型,綜合性比較強(qiáng).2、D【解析】

分別利用平均數(shù)以及方差和中位數(shù)的定義分析,進(jìn)而求出答案.【詳解】2、3、4的平均數(shù)為:(2+3+4)=3,中位數(shù)是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數(shù)為:(3+4+5)=4,中位數(shù)是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數(shù)不相等,方差相等.故選:D.【點(diǎn)睛】本題考查了平均數(shù)、中位數(shù)、方差的意義,解答本題的關(guān)鍵是熟練掌握這三種數(shù)的計算方法.3、C【解析】

根據(jù)A點(diǎn)坐標(biāo)即可建立平面直角坐標(biāo).【詳解】解:由A(0,2),B(1,1)可知原點(diǎn)的位置,

建立平面直角坐標(biāo)系,如圖,

∴C(2,-1)

故選:C.【點(diǎn)睛】本題考查平面直角坐標(biāo)系,解題的關(guān)鍵是建立直角坐標(biāo)系,本題屬于基礎(chǔ)題型.4、C【解析】設(shè)銷售該商品每月所獲總利潤為w,則w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴當(dāng)x=80時,w取得最大值,最大值為3600,即售價為80元/件時,銷售該商品所獲利潤最大,故選C.5、D【解析】

解:設(shè)方程的另一個根為a,由一元二次方程根與系數(shù)的故選可得,解得a=,故選D.6、D【解析】

根據(jù)冪的乘方:底數(shù)不變,指數(shù)相乘.合并同類項(xiàng)即可解答.【詳解】解:A、B兩項(xiàng)不是同類項(xiàng),所以不能合并,故A、B錯誤,C、D考查冪的乘方運(yùn)算,底數(shù)不變,指數(shù)相乘.,故D正確;【點(diǎn)睛】本題考查冪的乘方和合并同類項(xiàng),熟練掌握運(yùn)算法則是解題的關(guān)鍵.7、A【解析】分析:根據(jù)分母不為零,可得答案詳解:由題意,得,解得故選A.點(diǎn)睛:本題考查了分式有意義的條件,利用分母不為零得出不等式是解題關(guān)鍵.8、C【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A是軸對稱圖形,不是中心對稱圖形;B,C,D是軸對稱圖形,也是中心對稱圖形.故選:C.【點(diǎn)睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;中心對稱圖形:在同一平面內(nèi),如果把一個圖形繞某一點(diǎn)旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.9、D【解析】

首先寫出所有的組合情況,再進(jìn)一步根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進(jìn)行分析.【詳解】解:其中的任意三根的組合有3、4、1;3、4、x;3、1、x;4、1、x共四種情況,由題意:從中任取三根,首尾順次相接都能組成一個三角形,可得3<x<7,即x=4或5或1.①當(dāng)三邊為3、4、1時,其周長為3+4+1=13;②當(dāng)x=4時,周長最小為3+4+4=11,周長最大為4+1+4=14;③當(dāng)x=5時,周長最小為3+4+5=12,周長最大為4+1+5=15;④若x=1時,周長最小為3+4+1=13,周長最大為4+1+1=11;綜上所述,三角形周長最小為11,最大為11,故選:D.【點(diǎn)睛】本題考查的是三角形三邊關(guān)系,利用了分類討論的思想.掌握三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答本題的關(guān)鍵.10、A【解析】

根據(jù)已知作出三角形的高線AD,進(jìn)而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點(diǎn)A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

則△ABC的面積是:×AD×BC=×3×(3+4)=.

故選:A.【點(diǎn)睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進(jìn)而得出相關(guān)線段的長度是解決問題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、(a﹣1)1.【解析】

提取公因式(a?1),進(jìn)而分解因式得出答案.【詳解】解:(a+1)(a﹣1)﹣1a+1=(a+1)(a﹣1)﹣1(a﹣1)=(a﹣1)(a+1﹣1)=(a﹣1)1.故答案為:(a﹣1)1.【點(diǎn)睛】此題主要考查了提取公因式法分解因式,找出公因式是解題關(guān)鍵.12、4.1【解析】解:如圖所示:∵四邊形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根據(jù)題意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,設(shè)AP=EP=x,則PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根據(jù)勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案為4.1.13、0【解析】原式==0,故答案為0.14、【解析】分析:先移項(xiàng),整理為一元二次方程,讓根的判別式大于0求值即可.詳解:由圖象可知:二次函數(shù)y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(1,1),∴=1,即b2-4ac=-20a,∵ax2+bx+c=k有兩個不相等的實(shí)數(shù)根,∴方程ax2+bx+c-k=0的判別式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0∵拋物線開口向下∴a<0∴1-k>0∴k<1.故答案為k<1.點(diǎn)睛:本題主要考查了拋物線與x軸的交點(diǎn)問題,以及數(shù)形結(jié)合法;二次函數(shù)中當(dāng)b2-4ac>0時,二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個交點(diǎn).15、【解析】

先提取公因式,再利用平方差公式分解因式即可.【詳解】故答案為:.【點(diǎn)睛】本題考查了分解因式,熟練掌握因式法、公式法、十字相乘法、分組分解法的區(qū)別,根據(jù)題目選擇合適的方法是解題的關(guān)鍵.16、(6,4)或(﹣4,﹣6)【解析】

設(shè)點(diǎn)P的橫坐標(biāo)為x,表示出縱坐標(biāo),然后列方程求出x,再求解即可.【詳解】解:設(shè)點(diǎn)P的橫坐標(biāo)為x,則點(diǎn)P的縱坐標(biāo)為x-2,由題意得,

當(dāng)點(diǎn)P在第一象限時,x+x-2=10,

解得x=6,

∴x-2=4,

∴P(6,4);

當(dāng)點(diǎn)P在第三象限時,-x-x+2=10,

解得x=-4,

∴x-2=-6,

∴P(-4,-6).

故答案為:(6,4)或(-4,-6).【點(diǎn)睛】本題主要考查了點(diǎn)的坐標(biāo),讀懂題目信息,理解“點(diǎn)角距離”的定義并列出方程是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)、(t+6,t);(2)、當(dāng)t=2時,S有最小值是16;(3)、理由見解析.【解析】

(1)如圖所示,過點(diǎn)E作EG⊥x軸于點(diǎn)G,則∠COP=∠PGE=90°,由題意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,則OG=OP+PG=6+t,則點(diǎn)E的坐標(biāo)為(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x軸、FP⊥x軸,且EG=FP,∴四邊形EGPF為矩形,∴EF⊥BD,EF=PG,∴S四邊形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,∴當(dāng)t=2時,S有最小值是16;(3)①假設(shè)∠FBD為直角,則點(diǎn)F在直線BC上,∵PF=OP<AB,∴點(diǎn)F不可能在BC上,即∠FBD不可能為直角;②假設(shè)∠FDB為直角,則點(diǎn)D在EF上,∵點(diǎn)D在矩形的對角線PE上,∴點(diǎn)D不可能在EF上,即∠FDB不可能為直角;③假設(shè)∠BFD為直角且FB=FD,則∠FBD=∠FDB=45°,如圖2,作FH⊥BD于點(diǎn)H,則FH=PA,即4﹣t=6﹣t,方程無解,∴假設(shè)不成立,即△BDF不可能是等腰直角三角形.18、不公平【解析】【分析】列表得到所有情況,然后找出數(shù)字之和是3的倍數(shù)的情況,利用概率公式計算后進(jìn)行判斷即可得.【詳解】根據(jù)題意列表如下:12311(1,1)(2,1)(3,1)(1,1)2(1,2)(2,2)(3,2)(1,2)3(1,3)(2,3)(3,3)(1,3)1(1,1)(2,1)(3,1)(1,1)所有等可能的情況數(shù)有16種,其中兩次摸出的紙牌上數(shù)字之和是3的倍數(shù)的情況有:(2,1),(1,2),(1,2),(3,3),(2,1),共5種,∴P(甲獲勝)=,P(乙獲勝)=1﹣=,則該游戲不公平.【點(diǎn)睛】本題考查了列表法或樹狀圖法求概率,判斷游戲的公平性,用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)34;(2)①證明見解析;②22;(3)【解析】試題分析:(1)由正方形的性質(zhì)得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余關(guān)系證出∠AEP=∠PBC,得出△APE∽△BCP,得出對應(yīng)邊成比例即可求出AE的長;(2)①A、P、O、E四點(diǎn)共圓,即可得出結(jié)論;②連接OA、AC,由勾股定理求出AC=42,由圓周角定理得出∠OAP=∠OEP=45°,周長點(diǎn)O在AC上,當(dāng)P運(yùn)動到點(diǎn)B時,O為AC(3)設(shè)△APE的外接圓的圓心為M,作MN⊥AB于N,由三角形中位線定理得出MN=12AE,設(shè)AP=x,則BP=4﹣x,由相似三角形的對應(yīng)邊成比例求出AE的表達(dá)式,由二次函數(shù)的最大值求出AE的最大值為1,得出MN的最大值=1試題解析:(1)∵四邊形ABCD、四邊形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴AEBP=APBC,即AE4-1故答案為:34(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四點(diǎn)共圓,∴點(diǎn)O一定在△APE的外接圓上;②連接OA、AC,如圖1所示:∵四邊形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC=42+4∵A、P、O、E四點(diǎn)共圓,∴∠OAP=∠OEP=45°,∴點(diǎn)O在AC上,當(dāng)P運(yùn)動到點(diǎn)B時,O為AC的中點(diǎn),OA=12AC=2即點(diǎn)O經(jīng)過的路徑長為22(3)設(shè)△APE的外接圓的圓心為M,作MN⊥AB于N,如圖2所示:則MN∥AE,∵M(jìn)E=MP,∴AN=PN,∴MN=12AE設(shè)AP=x,則BP=4﹣x,由(1)得:△APE∽△BCP,∴AEBP=APBC,即AE4-x=x∴x=2時,AE的最大值為1,此時MN的值最大=12×1=1即△APE的圓心到AB邊的距離的最大值為12【點(diǎn)睛】本題考查圓、二次函數(shù)的最值等,正確地添加輔助線,根據(jù)已知證明△APE∽△BCP是解題的關(guān)鍵.20、80;(1)甲;(2);(3)乙學(xué)校競賽成績較好,理由見解析【解析】

首先根據(jù)乙校的成績結(jié)合眾數(shù)的定義即可得出a的值;(1)根據(jù)兩個學(xué)校成績的中位數(shù)進(jìn)一步判斷即可;(2)根據(jù)概率的定義,結(jié)合乙校優(yōu)秀成績的概率進(jìn)一步求解即可;(3)根據(jù)題意,從平均數(shù)以及中位數(shù)兩方面加以比較分析即可.【詳解】由乙校成績可知,其中80出現(xiàn)的次數(shù)最多,故80為該組數(shù)據(jù)的眾數(shù),∴a=80,故答案為:80;(1)由表格可知,甲校成績的中位數(shù)為60,乙校成績的中位數(shù)為75,∵小明這次競賽得了分,在他們學(xué)校排名屬中游略偏上,∴小明為甲校學(xué)生,故答案為:甲;(2)乙校隨便抽取一名學(xué)生的成績,該學(xué)生成績?yōu)閮?yōu)秀的概率為:,故答案為:;(3)乙校競賽成績較好,理由如下:因?yàn)橐倚5钠骄指哂诩仔5钠骄终f明平均水平高,乙校的中位數(shù)75高于甲校的中位數(shù)65,說明乙校分?jǐn)?shù)不低于70分的學(xué)生比甲校多,綜上所述,乙校競賽成績較好.【點(diǎn)睛】本題主要考查了眾數(shù)、中位數(shù)、平均數(shù)的定義與簡單概率的計算的綜合運(yùn)用,熟練掌握相關(guān)概念是解題關(guān)鍵.21、1.【解析】分析:利用新定義得到1010

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論