2022年福建省廈門工學(xué)院附屬學(xué)校高三數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第1頁
2022年福建省廈門工學(xué)院附屬學(xué)校高三數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第2頁
2022年福建省廈門工學(xué)院附屬學(xué)校高三數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第3頁
2022年福建省廈門工學(xué)院附屬學(xué)校高三數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第4頁
2022年福建省廈門工學(xué)院附屬學(xué)校高三數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.2.已知雙曲線的左右焦點(diǎn)分別為,,以線段為直徑的圓與雙曲線在第二象限的交點(diǎn)為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.3.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)a=()A.-1 B.1 C.0 D.24.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()5.將3個(gè)黑球3個(gè)白球和1個(gè)紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種6.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個(gè)交點(diǎn),若,則()A. B.3 C. D.27.在天文學(xué)中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.18.我國古代數(shù)學(xué)著作《九章算術(shù)》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1009.某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護(hù)士共8人組成兩個(gè)醫(yī)療分隊(duì),平均分到甲、乙兩個(gè)村進(jìn)行義務(wù)巡診,其中每個(gè)分隊(duì)都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護(hù)士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種10.已知雙曲線的焦距為,若的漸近線上存在點(diǎn),使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.11.已知拋物線上一點(diǎn)到焦點(diǎn)的距離為,分別為拋物線與圓上的動(dòng)點(diǎn),則的最小值為()A. B. C. D.12.已知正方體的棱長為2,點(diǎn)為棱的中點(diǎn),則平面截該正方體的內(nèi)切球所得截面面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個(gè)長、寬、高分別為1、2、2的長方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則容器體積的最小值為_________.14.已知是偶函數(shù),則的最小值為___________.15.已知等比數(shù)列的前項(xiàng)和為,,且,則__________.16.若將函數(shù)的圖象沿軸向右平移個(gè)單位后所得的圖象與的圖象關(guān)于軸對(duì)稱,則的最小值為________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線:與拋物線切于點(diǎn),直線:過定點(diǎn)Q,且拋物線上的點(diǎn)到點(diǎn)Q的距離與其到準(zhǔn)線距離之和的最小值為.(1)求拋物線的方程及點(diǎn)的坐標(biāo);(2)設(shè)直線與拋物線交于(異于點(diǎn)P)兩個(gè)不同的點(diǎn)A、B,直線PA,PB的斜率分別為,那么是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說明理由.18.(12分)在邊長為的正方形,分別為的中點(diǎn),分別為的中點(diǎn),現(xiàn)沿折疊,使三點(diǎn)重合,構(gòu)成一個(gè)三棱錐.(1)判別與平面的位置關(guān)系,并給出證明;(2)求多面體的體積.19.(12分)已知的內(nèi)角、、的對(duì)邊分別為、、,滿足.有三個(gè)條件:①;②;③.其中三個(gè)條件中僅有兩個(gè)正確,請(qǐng)選出正確的條件完成下面兩個(gè)問題:(1)求;(2)設(shè)為邊上一點(diǎn),且,求的面積.20.(12分)已知,分別是橢圓:的左,右焦點(diǎn),點(diǎn)在橢圓上,且拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn).(1)求,的值:(2)過點(diǎn)作不與軸重合的直線,設(shè)與圓相交于A,B兩點(diǎn),且與橢圓相交于C,D兩點(diǎn),當(dāng)時(shí),求△的面積.21.(12分)已知函數(shù).(1)求曲線在點(diǎn)處的切線方程;(2)若對(duì)任意的,當(dāng)時(shí),都有恒成立,求最大的整數(shù).(參考數(shù)據(jù):)22.(10分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計(jì)算得到答案.【詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點(diǎn)睛】本題考查函數(shù)的切線問題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.2、B【解析】

先設(shè)直線與圓相切于點(diǎn),根據(jù)題意,得到,再由,根據(jù)勾股定理求出,從而可得漸近線方程.【詳解】設(shè)直線與圓相切于點(diǎn),因?yàn)槭且詧A的直徑為斜邊的圓內(nèi)接三角形,所以,又因?yàn)閳A與直線的切點(diǎn)為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【點(diǎn)睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質(zhì)即可,屬于??碱}型.3、B【解析】

化簡得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點(diǎn)睛】本題考查了根據(jù)復(fù)數(shù)類型求參數(shù),意在考查學(xué)生的計(jì)算能力.4、D【解析】

由題意利用兩個(gè)向量坐標(biāo)形式的運(yùn)算法則,兩個(gè)向量平行、垂直的性質(zhì),得出結(jié)論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標(biāo)對(duì)應(yīng)不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標(biāo)對(duì)應(yīng)不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點(diǎn)睛】本題主要考查兩個(gè)向量坐標(biāo)形式的運(yùn)算,兩個(gè)向量平行、垂直的性質(zhì),屬于基礎(chǔ)題.5、D【解析】

采取分類計(jì)數(shù)和分步計(jì)數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個(gè)相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時(shí)將紅球插入6個(gè)球組成的7個(gè)空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個(gè)相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時(shí)紅球只能插入兩個(gè)相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點(diǎn)睛】本題考查排列組合公式的具體應(yīng)用,插空法的應(yīng)用,屬于基礎(chǔ)題6、D【解析】

根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設(shè)與軸的交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線的定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.7、A【解析】

由題意得到關(guān)于的等式,結(jié)合對(duì)數(shù)的運(yùn)算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點(diǎn)睛】本題以天文學(xué)問題為背景,考查考生的數(shù)學(xué)應(yīng)用意識(shí)?信息處理能力?閱讀理解能力以及指數(shù)對(duì)數(shù)運(yùn)算.8、B【解析】

根據(jù)程序框圖中程序的功能,可以列方程計(jì)算.【詳解】由題意,.故選:B.【點(diǎn)睛】本題考查程序框圖,讀懂程序的功能是解題關(guān)鍵.9、B【解析】

根據(jù)條件2名內(nèi)科醫(yī)生,每個(gè)村一名,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,根據(jù)排列組合進(jìn)行計(jì)算即可.【詳解】2名內(nèi)科醫(yī)生,每個(gè)村一名,有2種方法,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,要求外科醫(yī)生和護(hù)士都有,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,若甲村有1外科,2名護(hù)士,則有C3若甲村有2外科,1名護(hù)士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點(diǎn)睛】本題主要考查了分組分配問題,解決這類問題的關(guān)鍵是先分組再分配,屬于??碱}型.10、B【解析】

由可得;由過點(diǎn)所作的圓的兩條切線互相垂直可得,又焦點(diǎn)到雙曲線漸近線的距離為,則,進(jìn)而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,必有,而焦點(diǎn)到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點(diǎn)睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質(zhì)的應(yīng)用.11、D【解析】

利用拋物線的定義,求得p的值,由利用兩點(diǎn)間距離公式求得,根據(jù)二次函數(shù)的性質(zhì),求得,由取得最小值為,求得結(jié)果.【詳解】由拋物線焦點(diǎn)在軸上,準(zhǔn)線方程,則點(diǎn)到焦點(diǎn)的距離為,則,所以拋物線方程:,設(shè),圓,圓心為,半徑為1,則,當(dāng)時(shí),取得最小值,最小值為,故選D.【點(diǎn)睛】該題考查的是有關(guān)距離的最小值問題,涉及到的知識(shí)點(diǎn)有拋物線的定義,點(diǎn)到圓上的點(diǎn)的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.12、A【解析】

根據(jù)球的特點(diǎn)可知截面是一個(gè)圓,根據(jù)等體積法計(jì)算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設(shè)內(nèi)切球球心為,到平面的距離為,截面圓的半徑為,因?yàn)閮?nèi)切球的半徑等于正方體棱長的一半,所以球的半徑為,又因?yàn)?,所以,又因?yàn)?,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點(diǎn)睛】本題考查正方體的內(nèi)切球的特點(diǎn)以及球的截面面積的計(jì)算,難度一般.任何一個(gè)平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計(jì)算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

一個(gè)長、寬、高分別為1、2、2的長方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則圓柱形容器的底面直徑及高的最小值均等于長方體的體對(duì)角線的長,長方體的體對(duì)角線的長為,所以容器體積的最小值為.14、2【解析】

由偶函數(shù)性質(zhì)可得,解得,再結(jié)合基本不等式即可求解【詳解】令得,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào).故答案為:2【點(diǎn)睛】考查函數(shù)的奇偶性、基本不等式,屬于基礎(chǔ)題15、【解析】

由題意知,繼而利用等比數(shù)列的前項(xiàng)和為的公式代入求值即可.【詳解】解:由題意知,所以.故答案為:.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式和求和公式,屬于中檔題.16、【解析】

由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖像的對(duì)稱性,求得的最小值.【詳解】解:將函數(shù)的圖象沿軸向右平移個(gè)單位長度,可得的圖象.根據(jù)圖象與的圖象關(guān)于軸對(duì)稱,可得,,,即時(shí),的最小值為.故答案為:.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)圖像的對(duì)稱性,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(1,2);(2)存在,【解析】

(1)由直線恒過點(diǎn)點(diǎn)及拋物線C上的點(diǎn)到點(diǎn)Q的距離與到準(zhǔn)線的距離之和的最小值為,求出拋物線的方程,再由直線與拋物線相切,即可求得切點(diǎn)的坐標(biāo);(2)直線與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系,求得直線PA,PB的斜率,求出斜率之和為定值,即存在實(shí)數(shù)使得斜率之和為定值.【詳解】(1)由題意,直線變?yōu)?x+1-m(2y+1)=0,所以定點(diǎn)Q的坐標(biāo)為拋物線的焦點(diǎn)坐標(biāo),由拋物線C上的點(diǎn)到點(diǎn)Q的距離與到其焦點(diǎn)F的距離之和的最小值為,可得,解得或(舍去),故拋物線C的方程為又由消去y得,因?yàn)橹本€與拋物線C相切,所以,解得,此時(shí),所以點(diǎn)P坐標(biāo)為(1,2)(2)設(shè)存在滿足條件的實(shí)數(shù),點(diǎn),聯(lián)立,消去x得,則,依題意,可得,解得m<-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在實(shí)數(shù)=滿足條件.【點(diǎn)睛】本題主要考查拋物線方程的求解、及直線與圓錐曲線的位置關(guān)系的綜合應(yīng)用,解答此類題目,通常聯(lián)立直線方程與拋物線方程,應(yīng)用一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解,此類問題易錯(cuò)點(diǎn)是復(fù)雜式子的變形能力不足,導(dǎo)致錯(cuò)解,能較好的考查考生的邏輯思維能力、運(yùn)算求解能力、分析問題解決問題的能力等.18、(1)平行,證明見解析;(2).【解析】

(1)由題意及圖形的翻折規(guī)律可知應(yīng)是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應(yīng)是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【點(diǎn)睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎(chǔ)題.19、(1);(2).【解析】

(1)先求出角,進(jìn)而可得出,則①②中有且只有一個(gè)正確,③正確,然后分①③正確和②③正確兩種情況討論,結(jié)合三角形的面積公式和余弦定理可求得的值;(2)計(jì)算出和,計(jì)算出,可得出,進(jìn)而可求得的面積.【詳解】(1)因?yàn)?,所以,得,,,為鈍角,與矛盾,故①②中僅有一個(gè)正確,③正確.顯然,得.當(dāng)①③正確時(shí),由,得(無解);當(dāng)②③正確時(shí),由于,,得;(2)如圖,因?yàn)?,,則,則,.【點(diǎn)睛】本題考查解三角形綜合應(yīng)用,涉及三角形面積公式和余弦定理的應(yīng)用,考查計(jì)算能力,屬于中等題.20、(1);(2).【解析】

(1)由已知根據(jù)拋物線和橢圓的定義和性質(zhì),可求出,;(2)設(shè)直線方程為,聯(lián)立直線與圓的方程可以求出,再聯(lián)立直線和橢圓的方程化簡,由根與系數(shù)的關(guān)系得到結(jié)論,繼而求出面積.【詳解】(1)焦點(diǎn)為F(1,0),則F1(1,0),F(xiàn)2(1,0),,解得,=1,=1,(Ⅱ)由已知,可設(shè)直線方程為,,聯(lián)立得,易知△>0,則===因?yàn)?,所以?,解得聯(lián)立,得,△=8>0設(shè),則【點(diǎn)睛】本題主要考查拋物線和橢圓的定義與性質(zhì)應(yīng)用,同時(shí)考查利用根與系數(shù)的關(guān)系,解決直線與圓,直線與橢圓的位置關(guān)系問題.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論